IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124001783.html
   My bibliography  Save this article

A comprehensive framework for electric vehicle charging station siting along highways using weighted sum method

Author

Listed:
  • Gönül, Ömer
  • Duman, A. Can
  • Güler, Önder

Abstract

The proliferation of electric vehicles (EVs) has led to an increased demand for strategically located EV charging stations (EVCSs) to ensure a balanced and accessible charging network. The siting of EVCS involves a multifaceted process that includes technological, economic, social, geographical, and environmental factors. An EVCS network should deliver high-quality service, alleviate drivers' range anxiety, and be compatible with renewable energy system integration, while also accounting for technical infrastructure and future expansion expectations. Resting areas along highways, equipped with amenities and grid connections, emerge as potential sites for EVCS installation. Accordingly, this study presents an EVCS siting framework along highways, integrating expert opinions from diverse disciplines. The proposed method employs expert opinions to weigh site selection criteria and then uses a clustering-based approach to identify suitable locations for EVCS siting, utilizing the weighted sum method. According to the experts, the most important criterion is determined as the service level of the candidate point with a weight of 0.375, followed by traffic density (0.218), and proximity to connection roads (0.215). The method is tested both on a test highway and the Edirne-Ankara highway, which is the most heavily used in Türkiye. The results demonstrate that the test highway identifies 13 out of 18 optimal locations using the clustering strategy. Similarly, the siting method identifies 18 out of 31 optimal EVCS locations along the Edirne-Ankara highway ensuring the distance constraints. This approach is scalable and adaptable for application on highways in various countries where EVCS infrastructure is still developing.

Suggested Citation

  • Gönül, Ömer & Duman, A. Can & Güler, Önder, 2024. "A comprehensive framework for electric vehicle charging station siting along highways using weighted sum method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124001783
    DOI: 10.1016/j.rser.2024.114455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124001783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    2. Wang, Ying-Wei & Wang, Chuan-Ren, 2010. "Locating passenger vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 791-801, September.
    3. Rehman, Anis Ur & Ullah, Zia & Shafiq, Aqib & Hasanien, Hany M. & Luo, Peng & Badshah, Fazal, 2023. "Load management, energy economics, and environmental protection nexus considering PV-based EV charging stations," Energy, Elsevier, vol. 281(C).
    4. Thomas L. Saaty, 1987. "Risk—Its Priority and Probability: The Analytic Hierarchy Process," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 159-172, June.
    5. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    6. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    7. Feng-Bao Cui & Xiao-Yue You & Hua Shi & Hu-Chen Liu, 2018. "Optimal Siting of Electric Vehicle Charging Stations Using Pythagorean Fuzzy VIKOR Approach," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, June.
    8. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    9. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    10. Yunna Wu & Chao Xie & Chuanbo Xu & Fang Li, 2017. "A Decision Framework for Electric Vehicle Charging Station Site Selection for Residential Communities under an Intuitionistic Fuzzy Environment: A Case of Beijing," Energies, MDPI, vol. 10(9), pages 1-25, August.
    11. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Yue Zhang & Qi Zhang & Arash Farnoosh & Siyuan Chen & Yan Li, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Post-Print hal-02009151, HAL.
    13. Hopkins, Emma & Potoglou, Dimitris & Orford, Scott & Cipcigan, Liana, 2023. "Can the equitable roll out of electric vehicle charging infrastructure be achieved?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    15. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    16. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    17. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    18. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    19. Wang, Ying-Wei & Lin, Chuah-Chih, 2009. "Locating road-vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 821-829, September.
    20. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    21. Loni, Abdolah & Asadi, Somayeh, 2023. "Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco," Energy, Elsevier, vol. 282(C).
    22. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    23. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Di Xu & Wenhui Pei & Qi Zhang, 2022. "Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience," Energies, MDPI, vol. 15(14), pages 1-16, July.
    3. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    4. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    5. Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    6. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    9. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    10. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    11. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    12. Yıldız, Barış & Arslan, Okan & Karaşan, Oya Ekin, 2016. "A branch and price approach for routing and refueling station location model," European Journal of Operational Research, Elsevier, vol. 248(3), pages 815-826.
    13. Scheiper, Barbara & Schiffer, Maximilian & Walther, Grit, 2019. "The flow refueling location problem with load flow control," Omega, Elsevier, vol. 83(C), pages 50-69.
    14. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    15. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    16. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    17. Hui Zhao & Jing Gao & Xian Cheng, 2023. "Electric Vehicle Solar Charging Station Siting Study Based on GIS and Multi-Criteria Decision-Making: A Case Study of China," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    18. Zhang, Lihui & Zhao, Zhenli & Yang, Meng & Li, Songrui, 2020. "A multi-criteria decision method for performance evaluation of public charging service quality," Energy, Elsevier, vol. 195(C).
    19. Essam H. Houssein & Sanchari Deb & Diego Oliva & Hegazy Rezk & Hesham Alhumade & Mokhtar Said, 2021. "Performance of Gradient-Based Optimizer on Charging Station Placement Problem," Mathematics, MDPI, vol. 9(21), pages 1-16, November.
    20. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124001783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.