IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6413-d1119444.html
   My bibliography  Save this article

The Design and Application of Microgrid Supervisory System for Commercial Buildings Considering Dynamic Converter Efficiency

Author

Listed:
  • Wenshuai Bai

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Dian Wang

    (Department of Energy Internet Research, State Grid Energy Research Institute, Beijing 102209, China)

  • Zhongquan Miao

    (Department of Energy Internet Research, State Grid Energy Research Institute, Beijing 102209, China)

  • Xiaorong Sun

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Jiabin Yu

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Jiping Xu

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Yuqing Pan

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

Abstract

This paper presents a supervisory system that considers converter efficiency for local microgrids of commercial buildings to solve the uncertainty problem of the sources and loads while also optimizing local microgrid operating costs and maintaining power supply quality for commercial buildings. The supervisory system includes an energy management layer and a power management layer. In the energy management layer, a long-term optimization approach is used to reduce the operating costs by considering the dynamic converter efficiency. In the power management layer, a real-time power optimization method is structured to deal with the uncertainty problem of the sources and loads, and to ensure that the direct current bus power is balanced while also guaranteeing the power quality by considering the dynamic converter efficiency. Four cases are proposed for the supervisory system, and these cases are simulated in MATLAB/Simulink under three typical weather conditions: cloud, sunshine, and rain. The comparison of simulation results for cases 1 and 2 illustrates the impact of converter efficiency on energy coordination in microgrids. The simulation results of cases 3 and 4 verify that the performance—in terms of the power supply quality and the operating costs—of the proposed microgrid supervisory system considering dynamic converter efficiency outperforms that of the microgrid supervisory system considering fixed converter efficiency.

Suggested Citation

  • Wenshuai Bai & Dian Wang & Zhongquan Miao & Xiaorong Sun & Jiabin Yu & Jiping Xu & Yuqing Pan, 2023. "The Design and Application of Microgrid Supervisory System for Commercial Buildings Considering Dynamic Converter Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6413-:d:1119444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferahtia, Seydali & Djeroui, Ali & Rezk, Hegazy & Houari, Azeddine & Zeghlache, Samir & Machmoum, Mohamed, 2022. "Optimal control and implementation of energy management strategy for a DC microgrid," Energy, Elsevier, vol. 238(PB).
    2. Bruno Domenech & Laia Ferrer-Martí & Facundo García & Georgina Hidalgo & Rafael Pastor & Antonin Ponsich, 2022. "Optimizing PV Microgrid Isolated Electrification Projects—A Case Study in Ecuador," Mathematics, MDPI, vol. 10(8), pages 1-24, April.
    3. Erol, Özge & Başaran Filik, Ümmühan, 2022. "A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities," Applied Energy, Elsevier, vol. 316(C).
    4. Kim, Gyeongmin & Hur, Jin, 2023. "A probabilistic approach to potential estimation of renewable energy resources based on augmented spatial interpolation," Energy, Elsevier, vol. 263(PA).
    5. Yang, Zhichun & Yang, Fan & Min, Huaidong & Tian, Hao & Hu, Wei & Liu, Jian & Eghbalian, Nasrin, 2023. "Energy management programming to reduce distribution network operating costs in the presence of electric vehicles and renewable energy sources," Energy, Elsevier, vol. 263(PA).
    6. Chen, Tengpeng & Cao, Yuhao & Qing, Xinlin & Zhang, Jingrui & Sun, Yuhao & Amaratunga, Gehan A.J., 2022. "Multi-energy microgrid robust energy management with a novel decision-making strategy," Energy, Elsevier, vol. 239(PA).
    7. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. V, Kavitha & V, Malathi & Guerrero, Josep M. & Bazmohammadi, Najmeh, 2022. "Energy management system using Mimosa Pudica optimization technique for microgrid applications," Energy, Elsevier, vol. 244(PA).
    9. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    10. Xiaomin Wu & Weihua Cao & Dianhong Wang & Min Ding, 2019. "A Multi-Objective Optimization Dispatch Method for Microgrid Energy Management Considering the Power Loss of Converters," Energies, MDPI, vol. 12(11), pages 1-19, June.
    11. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    12. Hongwei Wu & Manuela Sechilariu & Fabrice Locment, 2017. "Influence of Dynamic Efficiency in the DC Microgrid Power Balance," Energies, MDPI, vol. 10(10), pages 1-17, October.
    13. Demirci, Alpaslan & Öztürk, Zafer & Tercan, Said Mirza, 2023. "Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones," Energy, Elsevier, vol. 262(PA).
    14. Kaewnern, Hathaipat & Wangkumharn, Sirikul & Deeyaonarn, Wongsathon & Yousaf, Abaid Ullah & Kongbuamai, Nattapan, 2023. "Investigating the role of research development and renewable energy on human development: An insight from the top ten human development index countries," Energy, Elsevier, vol. 262(PB).
    15. Yin, Mingjia & Li, Kang & Yu, James, 2022. "A data-driven approach for microgrid distributed generation planning under uncertainties," Applied Energy, Elsevier, vol. 309(C).
    16. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
    17. Chen, Xianqing & Dong, Wei & Yang, Qiang, 2022. "Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teodora Mîndra & Oana Chenaru & Radu Dobrescu & Lucian Toma, 2024. "Modular Microgrid Technology with a Single Development Environment Per Life Cycle," Energies, MDPI, vol. 17(19), pages 1-19, October.
    2. Yu Nie & Xiaotian Zhang & Yihua Hu & Mohammad Nasr Esfahani, 2024. "Automatic Power Direction Control of Dual Active Bridge/Triple Active Bridge Converter in Emergency Energy Supply for Sustainability," Sustainability, MDPI, vol. 16(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Amit & Ray, Saheli, 2023. "Operational cost minimization of a microgrid with optimum battery energy storage system and plug-in-hybrid electric vehicle charging impact using slime mould algorithm," Energy, Elsevier, vol. 278(PA).
    2. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    3. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    4. Antonin Ponsich & Bruno Domenech & Mariona Vilà, 2023. "Preface to the Special Issue “Mathematical Optimization and Evolutionary Algorithms with Applications”," Mathematics, MDPI, vol. 11(10), pages 1-6, May.
    5. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    6. Yanyue Wang & Guohua Fang & Zhenni Wang, 2022. "The Benefit Realization Mechanism of Pumped Storage Power Plants Based on Multi-Dimensional Regulation and Leader-Follower Decision-Making," Energies, MDPI, vol. 15(16), pages 1-15, August.
    7. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    8. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    9. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    10. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    11. Shinwari, Riazullah & Wang, Yangjie & Gozgor, Giray & Mousavi, Mahdi, 2024. "Does FDI affect energy consumption in the belt and road initiative economies? The role of green technologies," Energy Economics, Elsevier, vol. 132(C).
    12. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    13. Yang, YeHa & Yang, SoYoung & Moon, HyungBin & Woo, JongRoul, 2024. "Analyzing heterogeneous electric vehicle charging preferences for strategic time-of-use tariff design and infrastructure development: A latent class approach," Applied Energy, Elsevier, vol. 374(C).
    14. Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Emad Kazemzadeh & Volkan Kaymaz, 2024. "Renewable energy deployment in Europe: Do politics matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28751-28784, November.
    15. Li, J.Y. & Chen, J.J. & Wang, Y.X. & Chen, W.G., 2024. "Combining multi-step reconfiguration with many-objective reduction as iterative bi-level scheduling for stochastic distribution network," Energy, Elsevier, vol. 290(C).
    16. Lingling Hu & Junming Zhou & Feng Jiang & Guangming Xie & Jie Hu & Qinglie Mo, 2023. "Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    17. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    18. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    19. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    20. Wisam Kareem Meteab & Salwan Ali Habeeb Alsultani & Francisco Jurado, 2023. "Energy Management of Microgrids with a Smart Charging Strategy for Electric Vehicles Using an Improved RUN Optimizer," Energies, MDPI, vol. 16(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6413-:d:1119444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.