IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p243-d1562241.html
   My bibliography  Save this article

Solar Irradiance Ramp Classification Using the IBEDI (Irradiance-Based Extreme Day Identification) Method

Author

Listed:
  • Llinet Benavides Cesar

    (Departamento de Ingeniería. Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid (UPM), 28012 Madrid, Spain)

  • Oscar Perpiñán-Lamigueiro

    (Departamento de Ingeniería. Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid (UPM), 28012 Madrid, Spain)

Abstract

The inherent variability of solar energy presents a significant challenge for grid operators, particularly when it comes to maintaining stability. Studying ramping phenomena is therefore crucial to understanding and managing fluctuations in power supply. In line with this goal, this study proposes a new classification approach for solar irradiance ramps, categorizing them into four distinct classes. We have proposed a methodology including adaptation and extension of a wind ramp classification to solar ramp classification titled the Irradiance-Based Extreme Day Identification method. Our proposal includes an agglomerative algorithm to find new ramp class boundaries. The strength of the proposed method relies on that it allows its generalization to any dataset. We assessed it on three datasets from distinct geographic regions—Oregon (northwestern United States), Hawaii (central Pacific Ocean), and Portugal (southwestern Europe)—each with varying temporal resolutions of five seconds, ten seconds, and one minute. The class boundaries for each dataset results in different limits of Z score value, as a consequence of the different climatic characteristics of each location and the time resolution of the datasets. The “low” class includes values less than 0.62 for Portugal, less than 2.17 for Oregon, and less than 2.19 for Hawaii. The “moderate” class spans values from 0.62 to 3.51 for Portugal, from 2.17 to 5.01 for Oregon, and from 2.19 to 5.88 for Hawaii. The “high” class covers values greater than 3.51 and up to 6 for Portugal, greater than 5.01 and up to 10.72 for Oregon, and greater than 5.88 and up to 8.01 for Hawaii. Lastly, the “severe” class includes values greater than 6 for Portugal, greater than 10.72 for Oregon, and greater than 8.01 for Hawaii. Under cloudy sky conditions, it is observed that the proposed algorithm is able to classify the four classes. These thresholds show how the proposed methodology adapts to the unique characteristics of each regional dataset.

Suggested Citation

  • Llinet Benavides Cesar & Oscar Perpiñán-Lamigueiro, 2025. "Solar Irradiance Ramp Classification Using the IBEDI (Irradiance-Based Extreme Day Identification) Method," Energies, MDPI, vol. 18(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:243-:d:1562241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Jiang, Lin, 2019. "Sensor network based PV power nowcasting with spatio-temporal preselection for grid-friendly control," Applied Energy, Elsevier, vol. 255(C).
    2. Cirés, E. & Marcos, J. & de la Parra, I. & García, M. & Marroyo, L., 2019. "The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions," Energy, Elsevier, vol. 188(C).
    3. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Abuella, Mohamed & Chowdhury, Badrul, 2019. "Forecasting of solar power ramp events: A post-processing approach," Renewable Energy, Elsevier, vol. 133(C), pages 1380-1392.
    5. Reno, Matthew J. & Hansen, Clifford W., 2016. "Identification of periods of clear sky irradiance in time series of GHI measurements," Renewable Energy, Elsevier, vol. 90(C), pages 520-531.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    4. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    5. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    7. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    8. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    9. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    10. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    11. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Bright, Jamie M. & Sun, Xixi & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2020. "Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Robert Basmadjian & Amirhossein Shaafieyoun, 2023. "Assessing ARIMA-Based Forecasts for the Percentage of Renewables in Germany: Insights and Lessons for the Future," Energies, MDPI, vol. 16(16), pages 1-19, August.
    14. Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Visser, L.R. & AlSkaif, T.A. & Khurram, A. & Kleissl, J. & van Sark, W.G.H.J.M., 2024. "Probabilistic solar power forecasting: An economic and technical evaluation of an optimal market bidding strategy," Applied Energy, Elsevier, vol. 370(C).
    16. Alex Bunodiere & Han Soo Lee, 2020. "Renewable Energy Curtailment: Prediction Using a Logic-Based Forecasting Method and Mitigation Measures in Kyushu, Japan," Energies, MDPI, vol. 13(18), pages 1-26, September.
    17. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    18. Wenqi Zhang & William Kleiber & Bri‐Mathias Hodge & Barry Mather, 2022. "A nonstationary and non‐Gaussian moving average model for solar irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    19. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    20. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:243-:d:1562241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.