IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4703-d411177.html
   My bibliography  Save this article

Renewable Energy Curtailment: Prediction Using a Logic-Based Forecasting Method and Mitigation Measures in Kyushu, Japan

Author

Listed:
  • Alex Bunodiere

    (Graduate School for International Development and Cooperation (IDEC), Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529, Japan)

  • Han Soo Lee

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan)

Abstract

High variable renewable energy (VRE) penetration led to the first-ever VRE curtailment in Japan, occurring in Kyushu in October 2018. Since then, there has been an average of 3% solar curtailment, with a peak of 13.7% in April 2019, resulting in approximately ¥9.6 billion of wasted energy. The VRE curtailment is expected to worsen as VRE penetration continues to increase along with nuclear energy increment in line with Japan’s 2030 energy goals. To prevent this curtailment and increase energy stability, a novel, logic-based forecasting method using hourly supply/demand data was developed. Initially, inaccurate results were returned; however, after several rounds of calibration that adjusted the quartile value of the max/min operating windows, the overall accuracy of this method was increased to 97% of real curtailment. This calibrated model was then used to test several curtailment mitigation scenarios. Some scenarios increased curtailment, while the two most successful scenarios, which reduced the installed nuclear capacity either seasonally or totally, limited curtailment by 95% and 97%, respectively. Another scenario with increased grid interconnection between regions reduced curtailment by 79%. Moreover, it would provide other benefits by unifying the national grid thereby increasing disaster resistance, reducing curtailment, improving grid flexibility and allowing for higher VRE penetrations. Currently, the situation is worsening, and some actions are required to reduce the curtailment and to achieve its 2030 energy goals in Japan. The mitigation measures studied by the logic method could be recommended to be referred to.

Suggested Citation

  • Alex Bunodiere & Han Soo Lee, 2020. "Renewable Energy Curtailment: Prediction Using a Logic-Based Forecasting Method and Mitigation Measures in Kyushu, Japan," Energies, MDPI, vol. 13(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4703-:d:411177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abuella, Mohamed & Chowdhury, Badrul, 2019. "Forecasting of solar power ramp events: A post-processing approach," Renewable Energy, Elsevier, vol. 133(C), pages 1380-1392.
    2. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hedayat Saboori & Shahram Jadid & Mehdi Savaghebi, 2021. "Spatio-Temporal and Power–Energy Scheduling of Mobile Battery Storage for Mitigating Wind and Solar Energy Curtailment in Distribution Networks," Energies, MDPI, vol. 14(16), pages 1-19, August.
    2. Julia Morgan & Casey Canfield, 2021. "Comparing Behavioral Theories to Predict Consumer Interest to Participate in Energy Sharing," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    3. Samuel Matthew G. Dumlao & Keiichi N. Ishihara, 2021. "Weather-Driven Scenario Analysis for Decommissioning Coal Power Plants in High PV Penetration Grids," Energies, MDPI, vol. 14(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    2. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    3. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    4. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    5. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    6. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    7. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    8. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    9. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    10. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Azaioud, Hakim & Farnam, Arash & Knockaert, Jos & Vandevelde, Lieven & Desmet, Jan, 2024. "Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone," Applied Energy, Elsevier, vol. 356(C).
    12. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    13. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Ma, Ziming & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Jin, Liming, 2020. "Constraint relaxation-based day-ahead market mechanism design to promote the renewable energy accommodation," Energy, Elsevier, vol. 198(C).
    15. Newbery, David M. & Biggar, Darryl R., 2024. "Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment," Energy Policy, Elsevier, vol. 191(C).
    16. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    17. Jean-Nicolas Louis & Stéphane Allard & Freideriki Kotrotsou & Vincent Debusschere, 2020. "A multi-objective approach to the prospective development of the European power system by 2050," Post-Print hal-02376337, HAL.
    18. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    19. Diana Bottger & Philipp Hartel, 2021. "On Wholesale Electricity Prices and Market Values in a Carbon-Neutral Energy System," Papers 2105.01127, arXiv.org.
    20. Song, Feng & Bi, De & Wei, Chu, 2019. "Market segmentation and wind curtailment: An empirical analysis," Energy Policy, Elsevier, vol. 132(C), pages 831-838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4703-:d:411177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.