IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016179.html
   My bibliography  Save this article

A two-step optimization model for virtual power plant participating in spot market based on energy storage power distribution considering comprehensive forecasting error of renewable energy output

Author

Listed:
  • Mei, Shufan
  • Tan, Qinliang
  • Trivedi, Anupam
  • Srinivasan, Dipti

Abstract

As a complement to the medium and long-term market, the spot market plays an important role in maintaining the security and stability of the power grid. However, as spot trading is more proximate to the actual operation of the power system, the virtual power plant (VPP) is exposed to greater volatility in renewable energy output as well as market prices. To enhance its market competitiveness, this paper constructs a two-step optimization model for VPP participation in the spot market. Based on long-term transaction, the energy storage power is distributed based on the comprehensive forecasting error of renewable energy output. This makes the VPP obtain the maximum profit in the day-ahead market. The trading deviation penalty is reduced by adjusting the energy storage operation plan in the real-time market. The conditional value at risk is used to measure the risk of a trading strategy. The profit of VPP participation in the spot market is analyzed under different risk levels, thus providing a basis for decision makers with different risk appetites. The results show that: (1) The sensitivity of the growth rates of EtVaRαand EtCVaRα to risk level shows an opposite trend. And there is an excess of arbitrage power at low risk level. (2) Although the total cost decreases as the risk level increases, the actual profit in the spot market tends to increase and then decrease. The risk level of the VPP should be set at about 0.4 to make full use of energy storage and obtain the maximum market benefit. (3) The energy storage power can be distributed more accurately according to the forecasting error of renewable energy. This not only enhances its arbitrage ability, but also ensures its regulation ability, thus improving the overall benefit of VPP at different risk levels. (4) The sensitivity of the trend in the unit profit of traded quantity in the spot market to the trading proportion in the medium and long-term market is not monotonic.

Suggested Citation

  • Mei, Shufan & Tan, Qinliang & Trivedi, Anupam & Srinivasan, Dipti, 2024. "A two-step optimization model for virtual power plant participating in spot market based on energy storage power distribution considering comprehensive forecasting error of renewable energy output," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016179
    DOI: 10.1016/j.apenergy.2024.124234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Weiguang & Dong, Wei & Yang, Qiang, 2023. "Day-ahead bidding strategy of cloud energy storage serving multiple heterogeneous microgrids in the electricity market," Applied Energy, Elsevier, vol. 336(C).
    2. Qu, Ying & Xiao, Yunpeng & Wang, Xiuli & Wang, Xifan & Lu, Yi & Li, Jianglong, 2023. "The equilibrium analysis and potential modifications on the China pilot electricity spot market," Energy Economics, Elsevier, vol. 122(C).
    3. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).
    4. Zhou, Dequn & Zhang, Yining & Wang, Qunwei & Ding, Hao, 2024. "How do uncertain renewable energy induced risks evolve in a two-stage deregulated wholesale power market," Applied Energy, Elsevier, vol. 353(PB).
    5. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Liu, Yang & Jiang, Zhigao & Guo, Bowei, 2022. "Assessing China’s provincial electricity spot market pilot operations: Lessons from Guangdong province," Energy Policy, Elsevier, vol. 164(C).
    7. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Banaei, Mohsen & Oloomi-Buygi, Majid & Zabetian-Hosseini, Seyed-Mahdi, 2018. "Strategic gaming of wind power producers joined with thermal units in electricity markets," Renewable Energy, Elsevier, vol. 115(C), pages 1067-1074.
    9. Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
    10. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    11. Liu, Shuangquan & Xie, Mengfei, 2020. "Modeling the daily generation schedules in under-developed electricity markets with high-share renewables: A case study of Yunnan in China," Energy, Elsevier, vol. 201(C).
    12. Rui Gao & Hongxia Guo & Ruihong Zhang & Tian Mao & Qianyao Xu & Baorong Zhou & Ping Yang, 2019. "A Two-Stage Dispatch Mechanism for Virtual Power Plant Utilizing the CVaR Theory in the Electricity Spot Market," Energies, MDPI, vol. 12(17), pages 1-18, September.
    13. Guo, Hongye & Davidson, Michael R. & Chen, Qixin & Zhang, Da & Jiang, Nan & Xia, Qing & Kang, Chongqing & Zhang, Xiliang, 2020. "Power market reform in China: Motivations, progress, and recommendations," Energy Policy, Elsevier, vol. 145(C).
    14. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    15. Sun, Shitong & Kazemi-Razi, S. Mahdi & Kaigutha, Lisa G. & Marzband, Mousa & Nafisi, Hamed & Al-Sumaiti, Ameena Saad, 2022. "Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage," Applied Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyu Li & Bangjun Wang, 2024. "A Bibliometric Analysis of Carbon Allowances in the Carbon Emissions Trading Market," Energies, MDPI, vol. 18(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaiyan Wang & Xueyan Wang & Rong Jia & Jian Dang & Yan Liang & Haodong Du, 2022. "Research on Coupled Cooperative Operation of Medium- and Long-Term and Spot Electricity Transaction for Multi-Energy System: A Case Study in China," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    2. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    3. Han, Jian & Tan, Qinliang & Ding, Yihong & Liu, Yuan, 2024. "Exploring the diffusion of low-carbon power generation and energy storage technologies under electricity market reform in China: An agent-based modeling framework for power sector," Energy, Elsevier, vol. 308(C).
    4. Mostafa Darvishi & Mehrdad Tahmasebi & Ehsan Shokouhmand & Jagadeesh Pasupuleti & Pitshou Bokoro & Jwan Satei Raafat, 2023. "Optimal Operation of Sustainable Virtual Power Plant Considering the Amount of Emission in the Presence of Renewable Energy Sources and Demand Response," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    5. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).
    6. Mei, Shufan & Tan, Qinliang & Liu, Yuan & Trivedi, Anupam & Srinivasan, Dipti, 2023. "Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction," Energy, Elsevier, vol. 284(C).
    7. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Xie, Haonan & Ahmad, Tanveer & Zhang, Dongdong & Goh, Hui Hwang & Wu, Thomas, 2024. "Community-based virtual power plants’ technology and circular economy models in the energy sector: A Techno-economy study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Hui Wang & Congcong Wang & Wenhui Zhao, 2022. "Decision on Mixed Trading between Medium- and Long-Term Markets and Spot Markets for Electricity Sales Companies under New Electricity Reform Policies," Energies, MDPI, vol. 15(24), pages 1-23, December.
    10. Pandey, Anubhav Kumar & Jadoun, Vinay Kumar & Jayalakshmi, N.S. & Malik, Hasmat & García Márquez, Fausto Pedro, 2024. "Multi-objective price based flexible reserve scheduling of virtual power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    12. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    13. Zhong, Xiaoqing & Zhong, Weifeng & Lin, Zhenjia & Zhou, Guoxu & Lai, Loi Lei & Xie, Shengli & Yan, Jinyue, 2024. "Localized electricity and carbon allowance management for interconnected discrete manufacturing systems considering algorithmic and physical feasibility," Applied Energy, Elsevier, vol. 372(C).
    14. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    15. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    16. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    17. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    18. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    19. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    20. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.