IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9740704.html
   My bibliography  Save this article

Measuring the Energy and Carbon Emission Efficiency of Regional Transportation Systems in China: Chance-Constrained DEA Models

Author

Listed:
  • Jianwei Ren
  • Bin Gao
  • Jiewei Zhang
  • Chunhua Chen

Abstract

In China, the transportation sector contributes about 18% of the total carbon emissions. This research contributes to measuring the energy and carbon emission efficiency (ECEE) of regional transportation systems (RTS) in China considering uncertain carbon emissions. A radial chance-constrained data envelopment analysis (DEA) model is developed to estimate the overall efficiency, and a nonradial chance-constrained DEA model is presented to evaluate the pure energy efficiency (PEE) and the pure carbon emission efficiency (PCEE). We prove that the proposed chance-constrained DEA models can effectively address the uncertain carbon emissions when measuring efficiency. We find that most of China’s RTS have low ECEE and the inefficiencies are mainly due to the lower gasoline utilization efficiency and the lower kerosene utilization efficiency. In addition, east China performs better than central China, and central China performs better than west China. In China, the unbalanced regional development of the ECEE in transportation corresponds with the unbalanced regional economic development. We provide some valuable suggestions based on the evaluation of the potential cuts in each kind of energy and the potential decreases in carbon emissions.

Suggested Citation

  • Jianwei Ren & Bin Gao & Jiewei Zhang & Chunhua Chen, 2020. "Measuring the Energy and Carbon Emission Efficiency of Regional Transportation Systems in China: Chance-Constrained DEA Models," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, April.
  • Handle: RePEc:hin:jnlmpe:9740704
    DOI: 10.1155/2020/9740704
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9740704.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9740704.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9740704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaojian Qu & Yuting Xu & Ying Ji & Can Feng & Jinpeng Wei & Shan Jiang, 2022. "Data-Driven Robust Data Envelopment Analysis for Evaluating the Carbon Emissions Efficiency of Provinces in China," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    2. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    3. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    4. Qizhen Wang & Qian Zhang, 2022. "Foreign Direct Investment and Carbon Emission Efficiency: The Role of Direct and Indirect Channels," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    5. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9740704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.