IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1934-d1378209.html
   My bibliography  Save this article

Electromobility Stage in the Energy Transition Policy—Economic Dimension Analysis of Charging Costs of Electric Vehicles

Author

Listed:
  • Wojciech Lewicki

    (Faculty of Economics, West Pomeranian University of Technology Szczecin, Żołnierska 47, 71-210 Szczecin, Poland)

  • Mariusz Niekurzak

    (Faculty of Management, AGH University of Krakow, Antoniego Gramatyka 10, 30-067 Krakow, Poland)

  • Ewelina Sendek-Matysiak

    (Faculty of Management and Computer Modeling, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

The available literature emphasizes that by 2040, electric vehicles may constitute up to 50% of the fleet of all passenger vehicles. This process will be one of the elements of the energy transformation and, at the same time, consistent with the idea of sustainable transport. As part of this research, the actual energy consumption and the range of electric vehicles were determined. This research was carried out using a selected group of electric cars from the most popular segments of passenger cars. The calculations were based on three charging scenarios: a home electrical network, a public alternating current (AC) charging station that allows charging with single-phase alternating current or alternating current, and a public direct current (DC) charging station that allows charging with direct current. The obtained results were compared with the results of cars with internal combustion and diesel engines after driving a 100-kilometer section of the route. In a broader scope, this research addresses the entities responsible for the energy transformation and the electromobility development strategy. In a narrower sense, vehicle users are considering the purchase of this type of vehicle for political, economic and technological reasons.

Suggested Citation

  • Wojciech Lewicki & Mariusz Niekurzak & Ewelina Sendek-Matysiak, 2024. "Electromobility Stage in the Energy Transition Policy—Economic Dimension Analysis of Charging Costs of Electric Vehicles," Energies, MDPI, vol. 17(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1934-:d:1378209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    2. Ewelina Sendek-Matysiak & Dariusz Pyza & Zbigniew Łosiewicz & Wojciech Lewicki, 2022. "Total Cost of Ownership of Light Commercial Electrical Vehicles in City Logistics," Energies, MDPI, vol. 15(22), pages 1-23, November.
    3. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    4. Li, Lantian & Wang, Zhenpo & Gao, Feng & Wang, Shuo & Deng, Junjun, 2020. "A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger," Applied Energy, Elsevier, vol. 260(C).
    5. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    7. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John H. T. Luong & Cang Tran & Di Ton-That, 2022. "A Paradox over Electric Vehicles, Mining of Lithium for Car Batteries," Energies, MDPI, vol. 15(21), pages 1-25, October.
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    4. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    5. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    6. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    7. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    8. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    9. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Piotr Pryciński & Piotr Pielecha & Jarosław Korzeb & Jacek Pielecha & Mariusz Kostrzewski & Ahmed Eliwa, 2024. "Air Pollutant Emissions of Passenger Cars in Poland in Terms of Their Environmental Impact and Type of Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-21, October.
    11. Cempírek Václav & Rybicka Iwona & Ljubaj Ivica, 2019. "Development of Electromobility in Terms of Freight Transport," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 23-32, November.
    12. Tomasz Osipowicz & Wawrzyniec Gołębiewski & Wojciech Lewicki & Adam Koniuszy & Karol Franciszek Abramek & Konrad Prajwowski & Oleh Klyus & Dominik Gałdyński, 2024. "Analysis of Energy Efficiency Parameters of a Hybrid Vehicle Powered by Fuel with a Liquid Catalyst," Energies, MDPI, vol. 17(20), pages 1-20, October.
    13. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    14. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    15. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    17. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    18. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    19. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    20. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1934-:d:1378209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.