IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923015921.html
   My bibliography  Save this article

Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control

Author

Listed:
  • Jia, Chunchun
  • He, Hongwen
  • Zhou, Jiaming
  • Li, Jianwei
  • Wei, Zhongbao
  • Li, Kunang

Abstract

Advanced energy management strategy (EMS) can ensure healthy, stable, and efficient operation of the on-board energy systems. Model Predictive Control (MPC) and Deep Reinforcement Learning (DRL) are two powerful control methods that have been extensively researched in the field of vehicle energy management. However, there are some problems with both approaches. On the one hand, MPC is difficult to cope with the complex systems and the excessive computational load caused by the non-linear solving over long prediction horizon, on the other hand, DRL lacks adaptability to different driving conditions and is poorly interpretable. Therefore, this paper innovatively proposes a learning-based model predictive (L-MPC) EMS for fuel cell hybrid electric bus (FCHEB) with health-aware control. This method effectively merges the advantages of control theory and machine learning. Specifically, firstly, the precise aging models for vehicular energy systems are established and incorporated into the optimization framework along with hydrogen consumption related metrics. Secondly, the principles of the learning-based MPC algorithm are thoroughly elucidated. In addition, to ensure driving details under future conditions, a speed predictor based on a double-layer Bi-directional Long Short-Term Memory (BiLSTM) is proposed at the strategy supervision layer. Finally, the superiority of the proposed strategy in prolonging the lifespan of the energy systems and reducing overall vehicle operating cost is verified by comprehensive comparisons with state-of-the-art MPC and DRL methods under real-world collected driving condition.

Suggested Citation

  • Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015921
    DOI: 10.1016/j.apenergy.2023.122228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Xinyou & Wu, Jiayun & Wei, Yimin, 2021. "An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC," Energy, Elsevier, vol. 234(C).
    2. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    3. Lin, Xinyou & Xu, Xinhao & Wang, Zhaorui, 2022. "Deep Q-learning network based trip pattern adaptive battery longevity-conscious strategy of plug-in fuel cell hybrid electric vehicle," Applied Energy, Elsevier, vol. 321(C).
    4. Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
    5. Zhang, Kaixuan & Ruan, Jiageng & Li, Tongyang & Cui, Hanghang & Wu, Changcheng, 2023. "The effects investigation of data-driven fitting cycle and deep deterministic policy gradient algorithm on energy management strategy of dual-motor electric bus," Energy, Elsevier, vol. 269(C).
    6. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    7. Zhou, Jianhao & Xue, Yuan & Xu, Da & Li, Chaoxiong & Zhao, Wanzhong, 2022. "Self-learning energy management strategy for hybrid electric vehicle via curiosity-inspired asynchronous deep reinforcement learning," Energy, Elsevier, vol. 242(C).
    8. Wei, Zhongbao & Zhao, Difan & He, Hongwen & Cao, Wanke & Dong, Guangzhong, 2020. "A noise-tolerant model parameterization method for lithium-ion battery management system," Applied Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwanwoo Lee & Chankyu Kang, 2024. "Expansion of Next-Generation Sustainable Clean Hydrogen Energy in South Korea: Domino Explosion Risk Analysis and Preventive Measures Due to Hydrogen Leakage from Hydrogen Re-Fueling Stations Using Mo," Sustainability, MDPI, vol. 16(9), pages 1-16, April.
    2. Tomasz Osipowicz & Wawrzyniec Gołębiewski & Wojciech Lewicki & Adam Koniuszy & Karol Franciszek Abramek & Konrad Prajwowski & Oleh Klyus & Dominik Gałdyński, 2024. "Analysis of Energy Efficiency Parameters of a Hybrid Vehicle Powered by Fuel with a Liquid Catalyst," Energies, MDPI, vol. 17(20), pages 1-20, October.
    3. Wojciech Lewicki & Mariusz Niekurzak & Ewelina Sendek-Matysiak, 2024. "Electromobility Stage in the Energy Transition Policy—Economic Dimension Analysis of Charging Costs of Electric Vehicles," Energies, MDPI, vol. 17(8), pages 1-16, April.
    4. Massimo Sicilia & Davide Cervone & Pierpaolo Polverino & Cesare Pianese, 2024. "Advancements on Lumped Modelling of Membrane Water Content for Real-Time Prognostics and Control of PEMFC," Energies, MDPI, vol. 17(19), pages 1-20, September.
    5. Zhiming Zhang & Chenfu Quan & Sai Wu & Tong Zhang & Jinming Zhang, 2024. "An Electrochemical Performance Model Considering of Non-Uniform Gas Distribution Based on Porous Media Method in PEMFC Stack," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    6. Yanwei Liu & Mingda Wang & Jialuo Tan & Jie Ye & Jiansheng Liang, 2024. "Real-Time Energy Management Strategy for Fuel Cell Vehicles Based on DP and Rule Extraction," Energies, MDPI, vol. 17(14), pages 1-20, July.
    7. Paweł Ziemba & Marek Kannchen & Mariusz Borawski, 2024. "Selection of the Family Electric Car Based on Objective and Subjective Criteria—Analysis of a Case Study of Polish Consumers," Energies, MDPI, vol. 17(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    2. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information," Energy, Elsevier, vol. 290(C).
    3. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    4. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    5. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    6. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    7. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    8. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    9. Zhaowen Liang & Kai Liu & Jinjin Huang & Enfei Zhou & Chao Wang & Hui Wang & Qiong Huang & Zhenpo Wang, 2022. "Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    10. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    11. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    12. Chen, Fujun & Wang, Bowen & Ni, Meng & Gong, Zhichao & Jiao, Kui, 2024. "Online energy management strategy for ammonia-hydrogen hybrid electric vehicles harnessing deep reinforcement learning," Energy, Elsevier, vol. 301(C).
    13. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    14. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    15. Shangzhe Yu & Dominik Schäfer & Shidong Zhang & Roland Peters & Felix Kunz & Rüdiger-A. Eichel, 2023. "A Three-Dimensional Time-Dependent Model of the Degradation Caused by Chromium Poisoning in a Solid Oxide Fuel Cell Stack," Energies, MDPI, vol. 16(23), pages 1-23, November.
    16. Wei, Zhongbao & Hu, Jian & Li, Yang & He, Hongwen & Li, Weihan & Sauer, Dirk Uwe, 2022. "Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries," Applied Energy, Elsevier, vol. 307(C).
    17. Zhao, Junjie & Chang, Huawei & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers," Applied Energy, Elsevier, vol. 309(C).
    18. Hyeona Kim & Sung-Beom Kim & Deok-Hye Park & Kyung-Won Park, 2020. "Fluorine-Doped LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode for High-Performance Lithium-Ion Batteries," Energies, MDPI, vol. 13(18), pages 1-10, September.
    19. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    20. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.