IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3029-d180549.html
   My bibliography  Save this article

Energy Commodity Price Forecasting with Deep Multiple Kernel Learning

Author

Listed:
  • Shian-Chang Huang

    (Department of Business Administration, National Changhua University of Education, Changhua 50074, Taiwan)

  • Cheng-Feng Wu

    (School of Business Administration, Hubei University of Economics, Wuhan 430205, China
    Research Center of Hubei Logistics Development, Hubei University of Economics, Wuhan 430205, China
    Institute for Development of Cross-Strait Small and Medium Enterprise, Wuhan 430205, China)

Abstract

Oil is an important energy commodity. The difficulties of forecasting oil prices stem from the nonlinearity and non-stationarity of their dynamics. However, the oil prices are closely correlated with global financial markets and economic conditions, which provides us with sufficient information to predict them. Traditional models are linear and parametric, and are not very effective in predicting oil prices. To address these problems, this study developed a new strategy. Deep (or hierarchical) multiple kernel learning (DMKL) was used to predict the oil price time series. Traditional methods from statistics and machine learning usually involve shallow models; however, they are unable to fully represent complex, compositional, and hierarchical data features. This explains why traditional methods fail to track oil price dynamics. This study aimed to solve this problem by combining deep learning and multiple kernel machines using information from oil, gold, and currency markets. DMKL is good at exploiting multiple information sources. It can effectively identify the relevant information and simultaneously select an apposite data representation. The kernels of DMKL were embedded in a directed acyclic graph (DAG), which is a deep model and efficient at representing complex and compositional data features. This provided a solid foundation for extracting the key features of oil price dynamics. By using real data for empirical testing, our new system robustly outperformed traditional models and significantly reduced the forecasting errors.

Suggested Citation

  • Shian-Chang Huang & Cheng-Feng Wu, 2018. "Energy Commodity Price Forecasting with Deep Multiple Kernel Learning," Energies, MDPI, vol. 11(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3029-:d:180549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    2. Liwei Fan & Huiping Li, 2015. "Volatility analysis and forecasting models of crude oil prices: a review," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 38(1/2/3), pages 5-17.
    3. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    4. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    5. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    6. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    7. Abosedra, Salah & Baghestani, Hamid, 2004. "On the predictive accuracy of crude oil futures prices," Energy Policy, Elsevier, vol. 32(12), pages 1389-1393, August.
    8. Xiao, Jin & Li, Yuxi & Xie, Ling & Liu, Dunhu & Huang, Jing, 2018. "A hybrid model based on selective ensemble for energy consumption forecasting in China," Energy, Elsevier, vol. 159(C), pages 534-546.
    9. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    10. Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
    11. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    12. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
    2. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
    3. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    4. Emmanouil Sofianos & Emmanouil Zaganidis & Theophilos Papadimitriou & Periklis Gogas, 2024. "Forecasting East and West Coast Gasoline Prices with Tree-Based Machine Learning Algorithms," Energies, MDPI, vol. 17(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    2. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    3. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    4. Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    5. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    6. Yousaf Raza, Muhammad & Lin, Boqiang, 2021. "Oil for Pakistan: What are the main factors affecting the oil import?," Energy, Elsevier, vol. 237(C).
    7. Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
    8. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    9. Arash Sioofy Khoojine & Mahboubeh Shadabfar & Yousef Edrisi Tabriz, 2022. "A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    10. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    11. Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
    12. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    13. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    14. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
    15. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    16. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    17. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    18. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    19. Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
    20. Jha, Nimish & Kumar Tanneru, Hemanth & Palla, Sridhar & Hussain Mafat, Iradat, 2024. "Multivariate analysis and forecasting of the crude oil prices: Part I – Classical machine learning approaches," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3029-:d:180549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.