IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1238-d1351560.html
   My bibliography  Save this article

Heat and Flow Characteristics of Aerofoil-Shaped Fins on a Curved Target Surface in a Confined Channel for an Impinging Jet Array

Author

Listed:
  • Orhan Yalçınkaya

    (Mechanical Engineering Department, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye)

  • Ufuk Durmaz

    (Mechanical Engineering Department, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye)

  • Ahmet Ümit Tepe

    (Department of Electricity and Energy, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye)

  • Ali Cemal Benim

    (Center of Flow Simulation (CFS), Faculty of Mechanical and Process Engineering, Düsseldorf University of Applied Sciences, Münsterstr. 156, 40476 Düsseldorf, Germany)

  • Ünal Uysal

    (Mechanical Engineering Department, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye)

Abstract

The main purpose of this investigation was to explore the heat transfer and flow characteristics of aero-foil-shaped fins combined with extended jet holes, specifically focusing on their feasibility in cooling turbine blades. In this study, a comprehensive investigation was carried out by applying impinging jet array cooling ( IJAC ) on a semi-circular curved surface, which was roughened using aerofoil-shaped fins. Numerical computations were conducted under three different Reynolds numbers ( Re ) ranging from 5000 to 25,000, while nozzle-to-target surface spacings ( S / d ) ranged from 0.5 to 8.0. Furthermore, an assessment was made of the impact of different fin arrangements, single-row ( L 1 ), double-row ( L 2 ), and triple-row ( L 3 ), on convective heat transfer. Detailed examinations were performed on area-averaged and local Nusselt ( Nu ) numbers, flow properties, and the thermal performance criterion ( TPC ) on finned and smooth target surfaces. The study’s results revealed that the use of aerofoil-shaped fins and the reduction in S / d , along with surface roughening, led to significant increases in the local and area-averaged Nu numbers compared to the conventional IJAC scheme. The most notable heat transfer enhancement was observed at S / d = 0.5 utilizing extended jets and the surface design incorporating aerofoil-shaped fins. Under these specific conditions, the maximum heat transfer enhancement reached 52.81%. Moreover, the investigation also demonstrated that the highest TPC on the finned surface was achieved when S / d = 2.0 for L 2 at Re = 25,000, resulting in a TPC value of 1.12. Furthermore, reducing S / d and mounting aerofoil-shaped fins on the surface yielded a more uniform heat transfer distribution on the relevant surface than IJAC with a smooth surface, ensuring a relatively more uniform heat transfer distribution to minimize the risk of localized overheating.

Suggested Citation

  • Orhan Yalçınkaya & Ufuk Durmaz & Ahmet Ümit Tepe & Ali Cemal Benim & Ünal Uysal, 2024. "Heat and Flow Characteristics of Aerofoil-Shaped Fins on a Curved Target Surface in a Confined Channel for an Impinging Jet Array," Energies, MDPI, vol. 17(5), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1238-:d:1351560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Dexin & Zuo, Wei & Li, Qingqing & Zhang, Guangde & Zhou, Kun & E, Jiaqiang, 2023. "Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack," Energy, Elsevier, vol. 273(C).
    2. Zhang, Yuntian & Zuo, Wei & E, Jiaqiang & Li, Jing & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery," Energy, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Huang, Yuhan, 2024. "Effects of intermittent pulsating flow on the performance of multi-channel cold plate in electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 294(C).
    2. Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Zhou, Kun & E, Jiaqiang, 2023. "Multi-objective optimization of multi-channel cold plate under intermittent pulsating flow by RSM and NSGA-Ⅱ for thermal management of electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 283(C).
    3. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    4. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    5. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    6. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    7. Wang, Libiao & Zuo, Hongyan & Zhang, Bin & Jia, Guohai, 2024. "Effects of the cold plate with airfoil fins on the cooling performance enhancement of the prismatic LiFePO4 battery pack," Energy, Elsevier, vol. 296(C).
    8. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
    9. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    10. Li, Dexin & Zuo, Wei & Li, Qingqing & Zhang, Guangde & Zhou, Kun & E, Jiaqiang, 2023. "Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack," Energy, Elsevier, vol. 273(C).
    11. Zuo, Wei & Wang, Zijie & E, Jiaqiang & Li, Qingqing & Cheng, Qianju & Wu, Yinkun & Zhou, Kun, 2023. "Numerical investigations on the performance of a hydrogen-fueled micro planar combustor with tube outlet for thermophotovoltaic applications," Energy, Elsevier, vol. 263(PC).
    12. Zuo, Wei & Zhang, Yuntian & E, Jiaqiang & Li, Jing & Li, Qingqing & Zhang, Guangde, 2022. "Performance comparison between single S-channel and double S-channel cold plate for thermal management of a prismatic LiFePO4 battery," Renewable Energy, Elsevier, vol. 192(C), pages 46-57.
    13. Zuo, Wei & Zhang, Yuntian & E, Jiaqiang & Huang, Yuhan & Li, Qingqing & Zhou, Kun & Zhang, Guangde, 2022. "Effects of multi-factors on performance of an improved multi-channel cold plate for thermal management of a prismatic LiFePO4 battery," Energy, Elsevier, vol. 261(PB).
    14. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).
    15. Liu, Huaqiang & Gao, Xiangcheng & Zhao, Jiyun & Yu, Minghao & Niu, Dong & Ji, Yulong, 2022. "Liquid-based battery thermal management system performance improvement with intersected serpentine channels," Renewable Energy, Elsevier, vol. 199(C), pages 640-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1238-:d:1351560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.