IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p944-d1340732.html
   My bibliography  Save this article

Efficient Production of Microalgal Biomass—Step by Step to Industrial Scale

Author

Listed:
  • Małgorzata Hawrot-Paw

    (Department of Renewable Energy Engineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Patryk Ratomski

    (Department of Renewable Energy Engineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

Abstract

The production of microalgal biomass on a commercial scale remains a significant challenge. Despite the positive results obtained in the laboratory, there are difficulties in obtaining similar results in industrial photobioreactors. Changing the cultivation conditions can affect not only the growth of microalgae but also their metabolism. This is of particular importance for the use of biomass for bioenergy production, including biofuel production. The aim of this study was to determine the biomass production efficiency of selected microalgal strains, depending on the capacity of the photobioreactor. The lipid and ash content of the biomass were also taken into account. It was found that as the scale of production increased, the amount of biomass decreased, irrespective of the type of strain. The change in scale also affected the lipid content of the biomass. The highest values were found in 2.5 L photobioreactors (ranging from 26.3 ± 2.2% for Monoraphidium to 13.9 ± 0.3% for Chlorella vulgaris ). The least favourable conditions were found with industrial photobioreactors, where the lipid content of the microalgal biomass ranged from 7.1 ± 0.6% for Oocycstis submarina to 10.2 ± 1.2% for Chlorella fusca . The increase in photobioreactor capacity had a negative effect on the ash content.

Suggested Citation

  • Małgorzata Hawrot-Paw & Patryk Ratomski, 2024. "Efficient Production of Microalgal Biomass—Step by Step to Industrial Scale," Energies, MDPI, vol. 17(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:944-:d:1340732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Małgorzata Hawrot-Paw & Patryk Ratomski & Adam Koniuszy & Wojciech Golimowski & Mirosława Teleszko & Anna Grygier, 2021. "Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production," Energies, MDPI, vol. 14(21), pages 1-14, November.
    2. Małgorzata Hawrot-Paw & Magdalena Sąsiadek, 2023. "Optimization of Microalgal Biomass Production in Vertical Tubular Photobioreactors," Energies, MDPI, vol. 16(5), pages 1-14, March.
    3. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    3. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    4. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    5. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    7. Dasgupta, Chitralekha Nag & Suseela, M.R. & Mandotra, S.K. & Kumar, Pankaj & Pandey, Manish K. & Toppo, Kiran & Lone, J.A., 2015. "Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production," Applied Energy, Elsevier, vol. 146(C), pages 202-208.
    8. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    9. David Kwame Amenorfenyo & Xianghu Huang & Yulei Zhang & Qitao Zeng & Ning Zhang & Jiajia Ren & Qiang Huang, 2019. "Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges," IJERPH, MDPI, vol. 16(11), pages 1-19, May.
    10. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    11. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    12. Alvin B. Culaba & Aristotle T. Ubando & Phoebe Mae L. Ching & Wei-Hsin Chen & Jo-Shu Chang, 2020. "Biofuel from Microalgae: Sustainable Pathways," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    13. Kucmanová Alexandra & Gerulová Kristína, 2019. "Microalgae Harvesting: A Review," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 27(44), pages 129-143, June.
    14. Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.
    15. Ana F. Esteves & Eva M. Salgado & José C. M. Pires, 2022. "Recent Advances in Microalgal Biorefineries," Energies, MDPI, vol. 15(16), pages 1-4, August.
    16. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    17. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    18. Cerón-García, M.C. & Macías-Sánchez, M.D. & Sánchez-Mirón, A. & García-Camacho, F. & Molina-Grima, E., 2013. "A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source," Applied Energy, Elsevier, vol. 103(C), pages 341-349.
    19. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.
    20. Dragone, Giuliano & Fernandes, Bruno D. & Abreu, Ana P. & Vicente, António A. & Teixeira, José A., 2011. "Nutrient limitation as a strategy for increasing starch accumulation in microalgae," Applied Energy, Elsevier, vol. 88(10), pages 3331-3335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:944-:d:1340732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.