IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6197-d1539521.html
   My bibliography  Save this article

Innovative Approaches to Bridging Energy Supply and Demand Gaps Through Thermal Energy Storage: A Case Study

Author

Listed:
  • Michal Gorás

    (Institute of Architectural Engineering, Faculty of Civil Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Ján Domanický

    (Institute of Architectural Engineering, Faculty of Civil Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Daniela Káposztásová

    (Center of Research and Innovation in Construction, Faculty of Civil Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • František Vranay

    (Institute of Architectural Engineering, Faculty of Civil Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Zuzana Vranayová

    (Institute of Architectural Engineering, Faculty of Civil Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

Abstract

This study investigates innovative solutions for balancing energy supply and demand using long-term thermal energy storage (TES) systems, with a focus on tank thermal energy storage (TTES) for European buildings, which account for approximately 40% of energy consumption in the European Union. Research conducted at the Technical University of Košice explores the potential of TTES systems for efficient and long-term energy storage. The accumulation is carried out in three existing underground tanks of different volumes. Among various outputs, we present the cooling process resulting from covering the water surface and the effect of tank size on cooling. The findings indicate that covering the water surface in the tanks can effectively double the energy retention time, thereby extending the cooling period. A tank with a larger volume cools slower and better ensures the formation of temperature layers. Temperature layering allows for better utilization of the tanks’ potential in terms of energy. The overall result is a significant reduction in heat losses and CO₂ emissions. These results demonstrate the critical role of TTES in stabilizing renewable energy sources, especially solar energy, to support sustainable energy solutions in buildings by providing reliable and long-term energy storage.

Suggested Citation

  • Michal Gorás & Ján Domanický & Daniela Káposztásová & František Vranay & Zuzana Vranayová, 2024. "Innovative Approaches to Bridging Energy Supply and Demand Gaps Through Thermal Energy Storage: A Case Study," Energies, MDPI, vol. 17(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6197-:d:1539521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin Sartor, 2017. "Simulation Models to Size and Retrofit District Heating Systems," Energies, MDPI, vol. 10(12), pages 1-14, December.
    2. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    3. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    4. Zhang, Liang & Xu, Peng & Mao, Jiachen & Tang, Xu & Li, Zhengwei & Shi, Jianguo, 2015. "A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study," Applied Energy, Elsevier, vol. 156(C), pages 213-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    2. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    3. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
    5. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    6. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Guolong Li & Dongliang Sun & Dongxu Han & Bo Yu, 2022. "A Novel Layered Slice Algorithm for Soil Heat Storage and Its Solving Performance Analysis," Energies, MDPI, vol. 15(10), pages 1-23, May.
    8. Nordbeck, Johannes & Bauer, Sebastian & Dahmke, Andreas & Delfs, Jens-Olaf & Gomes, Hugo & Hailemariam, Henok & Kinias, Constantin & Meier zu Beerentrup, Kerstin & Nagel, Thomas & Smirr, Christian & V, 2020. "A modular cement-based subsurface heat storage: Performance test, model development and thermal impacts," Applied Energy, Elsevier, vol. 279(C).
    9. Karolina Dec & Elżbieta Broniewicz & Mirosław Broniewicz, 2020. "The Possibility Analysis of Adapting a Public Building to the Standard of a Building with a Zero Energy Balance," Energies, MDPI, vol. 13(23), pages 1-18, December.
    10. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    11. Anders E. Carlsson, 2020. "Coarse-Grained Model of Underground Thermal Energy Storage Applied to Efficiency Optimization," Energies, MDPI, vol. 13(8), pages 1-20, April.
    12. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    14. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    15. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    16. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    17. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
    18. Kim, Jongchan & Lee, Youngmin & Yoon, Woon Sang & Jeon, Jae Soo & Koo, Min-Ho & Keehm, Youngseuk, 2010. "Numerical modeling of aquifer thermal energy storage system," Energy, Elsevier, vol. 35(12), pages 4955-4965.
    19. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    20. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6197-:d:1539521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.