IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i2p390-397.html
   My bibliography  Save this article

Review of seasonal heat storage in large basins: Water tanks and gravel-water pits

Author

Listed:
  • Novo, Amaya V.
  • Bayon, Joseba R.
  • Castro-Fresno, Daniel
  • Rodriguez-Hernandez, Jorge

Abstract

In order to respond to climatic change, many efforts have been made to reduce harmful gas emissions. According to energy policies, an important goal is the implementation of renewable energy sources, as well as electrical and oil combustion savings through energy conservation. This paper focuses on an extensive review of the technologies developed, so far, for central solar heating systems employing seasonal sensible water storage in artificial large scale basins. Among technologies developed since the late 1970s, the use of underground spaces as an energy storage medium - Underground Thermal Energy Storage (UTES) - has been investigated and closely observed in experimental plants in many countries, most of them, as part of government programmes. These projects attempt to optimise technical and economic aspects within an international knowledge exchange; as a result, UTES is becoming a reliable option to save energy through energy conservation. Other alternatives to UTES include large water tanks and gravel-water pits, also called man-made or artificial aquifers. This implies developing this technology by construction and leaving natural aquifers untouched. The present article reviews most studies and results obtained in this particular area to show the technical and economical feasibility for each system and specifics problems occurred during construction and operation. Advantages and disadvantages are pointed out to compare both alternatives. The projects discussed have been carried out mainly in European states with some references to other countries.

Suggested Citation

  • Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:2:p:390-397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00269-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ucar, Aynur & Inalli, Mustafa, 2008. "Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating," Renewable Energy, Elsevier, vol. 33(12), pages 2532-2539.
    2. Yumrutaş, R. & Ünsal, M., 2000. "Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks," Energy, Elsevier, vol. 25(12), pages 1231-1243.
    3. Mawire, A. & McPherson, M. & Heetkamp, R.R.J. van den & Mlatho, S.J.P., 2009. "Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1246-1252, July.
    4. Medrano, M. & Yilmaz, M.O. & Nogués, M. & Martorell, I. & Roca, Joan & Cabeza, Luisa F., 2009. "Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems," Applied Energy, Elsevier, vol. 86(10), pages 2047-2055, October.
    5. Zhang, H.-F. & Ge, X.-S. & Ye, H., 2007. "Modeling of a space heating and cooling system with seasonal energy storage," Energy, Elsevier, vol. 32(1), pages 51-58.
    6. Paksoy, H.O. & Gürbüz, Z. & Turgut, B. & Dikici, D. & Evliya, H., 2004. "Aquifer thermal storage (ATES) for air-conditioning of a supermarket in Turkey," Renewable Energy, Elsevier, vol. 29(12), pages 1991-1996.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    3. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    4. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    5. Abbas, Zulkarnain & Yong, Li & Abbas, Saqlain & Chen, Dongwen & Li, Y. & Wang, R.Z., 2021. "Performance analysis of seasonal soil heat storage system based on numerical simulation and experimental investigation," Renewable Energy, Elsevier, vol. 178(C), pages 66-78.
    6. SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
    7. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).
    8. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    9. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    10. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    11. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    12. Zhou, Hao & Lai, Zhenya & Cen, Kefa, 2022. "Experimental study on energy storage performances of packed bed with different solid materials," Energy, Elsevier, vol. 246(C).
    13. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    14. Prasanna, U.R. & Umanand, L., 2011. "Modeling and design of a solar thermal system for hybrid cooking application," Applied Energy, Elsevier, vol. 88(5), pages 1740-1755, May.
    15. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    16. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.
    17. Zhang, H.-F. & Ge, X.-S. & Ye, H., 2007. "Modeling of a space heating and cooling system with seasonal energy storage," Energy, Elsevier, vol. 32(1), pages 51-58.
    18. Merlin, Kevin & Delaunay, Didier & Soto, Jérôme & Traonvouez, Luc, 2016. "Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM," Applied Energy, Elsevier, vol. 166(C), pages 107-116.
    19. Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, vol. 93(C), pages 564-569.
    20. Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:2:p:390-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.