IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p1955-d1599138.html
   My bibliography  Save this article

Thermodynamic Optimization of Building HVAC Systems Through Dynamic Modeling and Advanced Machine Learning

Author

Listed:
  • Samuel Moveh

    (Engineering Faculty, Transport and Telecommunication Institute, 1019 Riga, Latvia)

  • Emmanuel Alejandro Merchán-Cruz

    (Engineering Faculty, Transport and Telecommunication Institute, 1019 Riga, Latvia)

  • Ahmed Osman Ibrahim

    (Department of Architectural Engineering, College of Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Zeinab Abdallah Mohammed Elhassan

    (College of Architecture and Design, Department of Architecture, Renewable Energy Lab (RELAB), Prince Sultan University, Riyadh 12435, Saudi Arabia)

  • Nada Mohamed Ramadan Abdelhai

    (Architecture Engineering Program, Faculty of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Mona Dafalla Abdelrazig

    (Department of Interior Design, College of Arts and Humanities, Jazan University, Jazan 45142, Saudi Arabia)

Abstract

This study enhances thermodynamic efficiency and demand response in an office building’s HVAC system using machine learning (ML) and model predictive control (MPC). This study, conducted in a simulated EnergyPlus 8.9 environment integrated with MATLAB (R2023a, 9.14), focuses on optimizing the HVAC system of an office building in Jeddah, Kingdom of Saudi Arabia. Support vector regression (SVR) and deep reinforcement learning (DRL) were selected for their regression accuracy and adaptability in dynamic environments, with exergy destruction analysis used to assess thermodynamic efficiency. The models, integrated with MPC, aimed to reduce exergy destruction and improve demand response. Simulations evaluated room temperature prediction, HVAC energy optimization, and energy cost reduction. The DRL model showed superior prediction accuracy, reducing energy costs by 21.75% while keeping indoor temperature increase minimal at 0.12 K. This simulation-based approach demonstrates the potential of combining ML and MPC to optimize HVAC energy use and support demand response programs effectively.

Suggested Citation

  • Samuel Moveh & Emmanuel Alejandro Merchán-Cruz & Ahmed Osman Ibrahim & Zeinab Abdallah Mohammed Elhassan & Nada Mohamed Ramadan Abdelhai & Mona Dafalla Abdelrazig, 2025. "Thermodynamic Optimization of Building HVAC Systems Through Dynamic Modeling and Advanced Machine Learning," Sustainability, MDPI, vol. 17(5), pages 1-28, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1955-:d:1599138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/1955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/1955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haochen Xu & Niaona Zhang & Zonghao Li & Zichang Zhuo & Ye Zhang & Yilei Zhang & Haitao Ding, 2023. "Energy-Saving Speed Planning for Electric Vehicles Based on RHRL in Car following Scenarios," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    2. Angus McLay & Gavin Morant & Kelilah Breisch & John Rodwell & Scott Rayburg, 2024. "Practices to Improve the Sustainability of Australian Cold Storage Facilities," Sustainability, MDPI, vol. 16(11), pages 1-22, May.
    3. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    5. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    6. Michal Gorás & Ján Domanický & Daniela Káposztásová & František Vranay & Zuzana Vranayová, 2024. "Innovative Approaches to Bridging Energy Supply and Demand Gaps Through Thermal Energy Storage: A Case Study," Energies, MDPI, vol. 17(23), pages 1-17, December.
    7. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    8. Nala Alahmari & Rashid Mehmood & Ahmed Alzahrani & Tan Yigitcanlar & Juan M. Corchado, 2023. "Autonomous and Sustainable Service Economies: Data-Driven Optimization of Design and Operations through Discovery of Multi-Perspective Parameters," Sustainability, MDPI, vol. 15(22), pages 1-44, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    2. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    4. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    5. Meng Wang & Junqi Yu & Meng Zhou & Wei Quan & Renyin Cheng, 2023. "Joint Forecasting Model for the Hourly Cooling Load and Fluctuation Range of a Large Public Building Based on GA-SVM and IG-SVM," Sustainability, MDPI, vol. 15(24), pages 1-23, December.
    6. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.
    8. Sijia Li & Arman Oshnoei & Frede Blaabjerg & Amjad Anvari-Moghaddam, 2023. "Hierarchical Control for Microgrids: A Survey on Classical and Machine Learning-Based Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    9. Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
    10. Kai Yang & Tianhao Shi & Tingzhen Ming & Yongjia Wu & Yanhua Chen & Zhongyi Yu & Mohammad Hossein Ahmadi, 2023. "Study of Internal Flow Heat Transfer Characteristics of Ejection-Permeable FADS," Energies, MDPI, vol. 16(11), pages 1-20, May.
    11. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    13. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    14. Lu, Hsi-Peng & Cheng, Hsiang-Ling & Tzou, Jen-Chuen & Chen, Chiao-Shan, 2023. "Technology roadmap of AI applications in the retail industry," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    15. Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
    16. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    17. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    18. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    19. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    20. Yılmaz, Mehmet & Kaleli, Alirıza & Çorapsız, Muhammed Fatih, 2023. "Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1955-:d:1599138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.