Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113463
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, J. & Li, Y. & Wang, R.Z. & Liu, W., 2014. "Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application," Energy, Elsevier, vol. 67(C), pages 63-73.
- You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
- Tulus, Victor & Boer, Dieter & Cabeza, Luisa F. & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2016. "Enhanced thermal energy supply via central solar heating plants with seasonal storage: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 181(C), pages 549-561.
- Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
- Tordrup, K.W. & Poulsen, S.E. & Bjørn, H., 2017. "An improved method for upscaling borehole thermal energy storage using inverse finite element modelling," Renewable Energy, Elsevier, vol. 105(C), pages 13-21.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
- Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
- Flynn, Ciarán & Sirén, Kai, 2015. "Influence of location and design on the performance of a solar district heating system equipped with borehole seasonal storage," Renewable Energy, Elsevier, vol. 81(C), pages 377-388.
- Giordano, N. & Comina, C. & Mandrone, G. & Cagni, A., 2016. "Borehole thermal energy storage (BTES). First results from the injection phase of a living lab in Torino (NW Italy)," Renewable Energy, Elsevier, vol. 86(C), pages 993-1008.
- Zhang, Liang & Xu, Peng & Mao, Jiachen & Tang, Xu & Li, Zhengwei & Shi, Jianguo, 2015. "A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study," Applied Energy, Elsevier, vol. 156(C), pages 213-222.
- Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
- Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maragna, Charles & Rey, Charlotte & Perreaux, Marc, 2023. "A novel and versatile solar Borehole Thermal Energy Storage assisted by a Heat Pump. Part 1: System description," Renewable Energy, Elsevier, vol. 208(C), pages 709-725.
- Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Kang, Qilan & Liu, Meng, 2021. "Proposal and assessment of a new solar space heating system by integrating an absorption-compression heat pump," Applied Energy, Elsevier, vol. 294(C).
- Magnus de Witt & Hlynur Stefánsson & Ágúst Valfells & Joan Nymand Larsen, 2021. "Availability and Feasibility of Renewable Resources for Electricity Generation in the Arctic: The Cases of Longyearbyen, Maniitsoq, and Kotzebue," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
- Viktoriia Brazovskaia & Svetlana Gutman & Andrey Zaytsev, 2021. "Potential Impact of Renewable Energy on the Sustainable Development of Russian Arctic Territories," Energies, MDPI, vol. 14(12), pages 1-19, June.
- Wołoszyn, Jerzy, 2020. "Global sensitivity analysis of borehole thermal energy storage efficiency for seventeen material, design and operating parameters," Renewable Energy, Elsevier, vol. 157(C), pages 545-559.
- Pokhrel, Sajjan & Amiri, Leyla & Zueter, Ahmad & Poncet, Sébastien & Hassani, Ferri P. & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "Thermal performance evaluation of integrated solar-geothermal system; a semi-conjugate reduced order numerical model," Applied Energy, Elsevier, vol. 303(C).
- Nicolò Giordano & Louis Lamarche & Jasmin Raymond, 2021. "Evaluation of Subsurface Heat Capacity through Oscillatory Thermal Response Tests," Energies, MDPI, vol. 14(18), pages 1-26, September.
- Nehed Jaziri & Jasmin Raymond & Nicoló Giordano & John Molson, 2019. "Long-Term Temperature Evaluation of a Ground-Coupled Heat Pump System Subject to Groundwater Flow," Energies, MDPI, vol. 13(1), pages 1-19, December.
- Xiangshou Dong & Shihang Hu & Quanzhi Yuan & Yaowen Kou & Shujun Li & Wei Deng & Ping Ren, 2023. "Research on Vegetation Ecological Security in Arid Region Mountain Front River Valleys Based on Ecological Water Consumption and Water Demand," Land, MDPI, vol. 12(8), pages 1-25, August.
- Mafalda M. Miranda & Jasmin Raymond & Chrystel Dezayes, 2020. "Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions," Energies, MDPI, vol. 13(16), pages 1-35, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
- Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
- Nilsson, Emil & Rohdin, Patrik, 2019. "Performance evaluation of an industrial borehole thermal energy storage (BTES) project – Experiences from the first seven years of operation," Renewable Energy, Elsevier, vol. 143(C), pages 1022-1034.
- Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
- Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
- Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
- Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
- Tulus, Victor & Abokersh, Mohamed Hany & Cabeza, Luisa F. & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2019. "Economic and environmental potential for solar assisted central heating plants in the EU residential sector: Contribution to the 2030 climate and energy EU agenda," Applied Energy, Elsevier, vol. 236(C), pages 318-339.
- Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2020. "Multi-objective optimisation of a seasonal solar thermal energy storage system for space heating in cold climate," Applied Energy, Elsevier, vol. 268(C).
- Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
- Yang, Tianrun & Liu, Wen & Sun, Qie & Hu, Weihao & Kramer, Gert Jan, 2023. "Techno-economic-environmental analysis of seasonal thermal energy storage with solar heating for residential heating in China," Energy, Elsevier, vol. 283(C).
- Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Karolina Dec & Elżbieta Broniewicz & Mirosław Broniewicz, 2020. "The Possibility Analysis of Adapting a Public Building to the Standard of a Building with a Zero Energy Balance," Energies, MDPI, vol. 13(23), pages 1-18, December.
- Maragna, Charles & Rey, Charlotte & Perreaux, Marc, 2023. "A novel and versatile solar Borehole Thermal Energy Storage assisted by a Heat Pump. Part 1: System description," Renewable Energy, Elsevier, vol. 208(C), pages 709-725.
- Zhu, Li & Chen, Sarula & Yang, Yang & Tian, Wei & Sun, Yong & Lyu, Mian, 2019. "Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase," Renewable Energy, Elsevier, vol. 143(C), pages 183-198.
- Zhu, Li & Chen, Sarula & Yang, Yang & Sun, Yong, 2019. "Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions," Renewable Energy, Elsevier, vol. 131(C), pages 494-505.
- Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
- Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
More about this item
Keywords
Solar-geothermal; TRNSYS; FEFLOW; Arctic; Groundwater; Life-cycle cost analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:15. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.