IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6000-d1532100.html
   My bibliography  Save this article

Optimized Operation of Integrated Cooling-Electricity-Heat Energy Systems with AA-CAES and Integrated Demand Response

Author

Listed:
  • Tiannan Ma

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Lilin Peng

    (Sichuan Power Exchange Center Co., Ltd., Chengdu 610041, China)

  • Gang Wu

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Danhao Chen

    (State Grid Hubei Electric Power Co., Ltd., Yichang Power Supply Company, Yichang 443000, China)

  • Xin Zou

    (Department of Economic Management, North China Electric Power University, Baoding 071003, China)

Abstract

Integrated energy systems (IESs) have been implemented with the objective of enhancing the efficiency of energy utilization and facilitating the sustainable transition of society and energy systems. To further explore the multi-energy coupling capacity and carbon reduction potential of the IESs, this study presents the design of an integrated cold-electricity-heat energy system (ICEHS) with advanced adiabatic compressed air energy storage (AA-CAES). AA-CAES has the capacity to not only store and release electric energy, but also to provide cold and heat energy, which makes it an ideal choice for this application. The main work of this study is fourfold: (1) the energy hub concept is employed to describe the energy transformations within AA-CAES, thereby reducing the modeling complexity; (2) integrated demand response (IDR) for cooling, heating, and electric loads, including shiftable loads, adjustable loads, interruptible loads, and replaceable loads, is considered; (3) Latin hypercubic sampling in conjunction with K-means clustering is employed to address the issue of source-load uncertainty; and (4) an ICEHS operation optimization model is developed with the objective of minimizing the daily operating cost, where the possible cost terms include energy purchase cost, operation and maintenance cost, demand response cost, and carbon emission cost. A typical community integrated energy system is employed as an illustrative example, and four different scenarios are established to validate the effectiveness of the proposed model. The results indicate that AA-CAES and IDR can effectively reduce the daily operating cost and carbon emissions of an ICEHS. In comparison to the scenario that did not incorporate AA-CAES and IDR, the daily operating cost and carbon emissions are reduced by 4.8% and 10.3%, respectively.

Suggested Citation

  • Tiannan Ma & Lilin Peng & Gang Wu & Danhao Chen & Xin Zou, 2024. "Optimized Operation of Integrated Cooling-Electricity-Heat Energy Systems with AA-CAES and Integrated Demand Response," Energies, MDPI, vol. 17(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6000-:d:1532100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Jakiel & Stefan Zunft & Andreas Nowi, 2007. "Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(3), pages 296-306.
    2. Yang, Meng & Liu, Yisheng, 2023. "Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response," Energy, Elsevier, vol. 283(C).
    3. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    4. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    5. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).
    6. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    7. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    8. Zhou, Siyu & Han, Yang & Chen, Shuheng & Yang, Ping & Mahmoud, Karar & Darwish, Mohamed M.F. & Matti, Lehtonen & Zalhaf, Amr S., 2023. "A multiple uncertainty-based Bi-level expansion planning paradigm for distribution networks complying with energy storage system functionalities," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Wenna & Ma, Kai & Yang, Jie & Guo, Shiliang, 2024. "A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park," Energy, Elsevier, vol. 302(C).
    2. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    3. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    4. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    5. Nolan, Sheila & Neu, Olivier & O’Malley, Mark, 2017. "Capacity value estimation of a load-shifting resource using a coupled building and power system model," Applied Energy, Elsevier, vol. 192(C), pages 71-82.
    6. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    7. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    8. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    9. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    10. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    11. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    12. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    13. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.
    14. Cui, Jia & Zhang, Ximing & Liu, Wei & Yan, Xinyue & Hu, Zhen & Li, Chaoran & Huang, Jingbo, 2024. "A novel trading optimization strategy of source-load bilateral thermoelectric spot based on industrial parks interior," Energy, Elsevier, vol. 302(C).
    15. Ann-Kathrin Klaas & Hans-Peter Beck, 2021. "A MILP Model for Revenue Optimization of a Compressed Air Energy Storage Plant with Electrolysis," Energies, MDPI, vol. 14(20), pages 1-21, October.
    16. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    17. Chen, Wei & Qin, Haoxuan & Zhu, Qing & Bai, Jianshu & Xie, Ningning & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2024. "Optimal design and performance assessment of a proposed constant power operation mode for the constant volume discharging process of advanced adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 221(C).
    18. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    20. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6000-:d:1532100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.