IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp1067-1078.html
   My bibliography  Save this article

A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems

Author

Listed:
  • Kocaman, Ayse Selin
  • Ozyoruk, Emin
  • Taneja, Shantanu
  • Modi, Vijay

Abstract

Pumping of water for agriculture can be a flexible component of electric demand. In this study, a framework that involves scenario based stochastic programming models is developed to examine the effect of load shifting on the renewable energy system sizing for agricultural load. With the help of this framework, alternative load shifting policies are evaluated to observe how the intrinsic flexibility of agricultural load reduces the amount of investments while designing a renewable system. Using real data from India’s Gujarat region, solar and wind cases are evaluated separately to understand the coherency between these sources and the agricultural demand. The value of using a dispatchable source to help with the intermittency of the renewable sources in the systems is discussed. It is also shown that energy storage can be a convenient control mechanism for the integration of renewables; however, is an expensive substitute for demand response programs for agricultural load. Benchmarks for the incentive amounts that can be provided for alternative load shifting policies are presented.

Suggested Citation

  • Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1067-1078
    DOI: 10.1016/j.renene.2020.01.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "Multi-objective optimization of a mixed renewable system with demand-side management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1461-1468, June.
    2. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    3. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    4. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    5. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    6. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    7. Yuan, Shengxi & Kocaman, Ayse Selin & Modi, Vijay, 2017. "Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente," Renewable Energy, Elsevier, vol. 105(C), pages 167-174.
    8. Katzenstein, Warren & Fertig, Emily & Apt, Jay, 2010. "The variability of interconnected wind plants," Energy Policy, Elsevier, vol. 38(8), pages 4400-4410, August.
    9. Erdinc, Ozan & Paterakis, Nikolaos G. & Pappi, Iliana N. & Bakirtzis, Anastasios G. & Catalão, João P.S., 2015. "A new perspective for sizing of distributed generation and energy storage for smart households under demand response," Applied Energy, Elsevier, vol. 143(C), pages 26-37.
    10. Nyholm, Emil & Odenberger, Mikael & Johnsson, Filip, 2017. "An economic assessment of distributed solar PV generation in Sweden from a consumer perspective – The impact of demand response," Renewable Energy, Elsevier, vol. 108(C), pages 169-178.
    11. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    12. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    13. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    14. Ludwig Kuznia & Bo Zeng & Grisselle Centeno & Zhixin Miao, 2013. "Stochastic optimization for power system configuration with renewable energy in remote areas," Annals of Operations Research, Springer, vol. 210(1), pages 411-432, November.
    15. Hu, Ming-Che & Lu, Su-Ying & Chen, Yen-Haw, 2016. "Stochastic–multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty," Applied Energy, Elsevier, vol. 182(C), pages 500-506.
    16. Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
    17. Peker, Meltem & Kocaman, Ayse Selin & Kara, Bahar Y., 2018. "Benefits of transmission switching and energy storage in power systems with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 1182-1197.
    18. Viana, Matheus Sabino & Manassero, Giovanni & Udaeta, Miguel E.M., 2018. "Analysis of demand response and photovoltaic distributed generation as resources for power utility planning," Applied Energy, Elsevier, vol. 217(C), pages 456-466.
    19. Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
    20. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    21. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    22. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    23. Stodola, Nathan & Modi, Vijay, 2009. "Penetration of solar power without storage," Energy Policy, Elsevier, vol. 37(11), pages 4730-4736, November.
    24. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiling Zhang & Jin Dong, 2022. "Building Load Control Using Distributionally Robust Chance-Constrained Programs with Right-Hand Side Uncertainty and the Risk-Adjustable Variants," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1531-1547, May.
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Bedi, Jatin & Toshniwal, Durga, 2021. "Can electricity demand lead to air pollution? A spatio-temporal analysis of electricity demand with climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
    5. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    3. Ihsan, Abbas & Jeppesen, Matthew & Brear, Michael J., 2019. "Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant," Applied Energy, Elsevier, vol. 238(C), pages 972-984.
    4. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    5. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    6. Sousa, Joana & Soares, Isabel, 2023. "Benefits and barriers concerning demand response stakeholder value chain: A systematic literature review," Energy, Elsevier, vol. 280(C).
    7. Jiang, Bo & Muzhikyan, Aramazd & Farid, Amro M. & Youcef-Toumi, Kamal, 2017. "Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 187(C), pages 833-846.
    8. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    9. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings," Applied Energy, Elsevier, vol. 173(C), pages 406-417.
    10. Hajibandeh, Neda & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generators," Applied Energy, Elsevier, vol. 212(C), pages 721-732.
    11. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    12. Yang, Xiaohui & Leng, Zhengyang & Xu, Shaoping & Yang, Chunsheng & Yang, Li & Liu, Kang & Song, Yaoren & Zhang, Liufang, 2021. "Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε-constraint method," Renewable Energy, Elsevier, vol. 172(C), pages 408-423.
    13. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    14. Thakur, Jagruti & Chakraborty, Basab, 2016. "Demand side management in developing nations: A mitigating tool for energy imbalance and peak load management," Energy, Elsevier, vol. 114(C), pages 895-912.
    15. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    16. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    17. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    18. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    19. Nolan, Sheila & Neu, Olivier & O’Malley, Mark, 2017. "Capacity value estimation of a load-shifting resource using a coupled building and power system model," Applied Energy, Elsevier, vol. 192(C), pages 71-82.
    20. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1067-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.