IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6803-d659139.html
   My bibliography  Save this article

A MILP Model for Revenue Optimization of a Compressed Air Energy Storage Plant with Electrolysis

Author

Listed:
  • Ann-Kathrin Klaas

    (Institute of Electrical Power Engineering and Energy Systems, Clausthal University of Technology, Leibnizstraße 28, 38678 Clausthal-Zellerfeld, Germany)

  • Hans-Peter Beck

    (Institute of Electrical Power Engineering and Energy Systems, Clausthal University of Technology, Leibnizstraße 28, 38678 Clausthal-Zellerfeld, Germany)

Abstract

Energy storage, both short- and long-term, will play a vital role in the energy system of the future. One storage technology that provides high power and capacity and that can be operated without carbon emissions is compressed air energy storage (CAES). However, it is widely assumed that CAES plants are not economically feasible. In this context, a mixed-integer linear programming (MILP) model of the Huntorf CAES plant was developed for revenue maximization when participating in the day-ahead market and the minute-reserve market in Germany. The plant model included various plant variations (increased power and storage capacity, recuperation) and a water electrolyzer to produce hydrogen to be used in the combustion chamber of the CAES plant. The MILP model was applied to four use cases that represent a market-orientated operation of the plant. The objective was the maximization of revenue with regard to price spreads and operating costs. To simulate forecast uncertainties of the market prices, a rolling horizon approach was implemented. The resulting revenues ranged between EUR 0.5 Mio and EUR 7 Mio per year and suggested that an economically sound operation of the storage plant is possible.

Suggested Citation

  • Ann-Kathrin Klaas & Hans-Peter Beck, 2021. "A MILP Model for Revenue Optimization of a Compressed Air Energy Storage Plant with Electrolysis," Energies, MDPI, vol. 14(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6803-:d:659139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafa Nasouri Gilvaei & Mahmood Hosseini Imani & Mojtaba Jabbari Ghadi & Li Li & Anahita Golrang, 2021. "Profit-Based Unit Commitment for a GENCO Equipped with Compressed Air Energy Storage and Concentrating Solar Power Units," Energies, MDPI, vol. 14(3), pages 1-20, January.
    2. Christoph Jakiel & Stefan Zunft & Andreas Nowi, 2007. "Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(3), pages 296-306.
    3. Yang Gu & James McCalley & Ming Ni & Rui Bo, 2013. "Economic Modeling of Compressed Air Energy Storage," Energies, MDPI, vol. 6(4), pages 1-21, April.
    4. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    5. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    6. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    7. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    8. Moreno, Rodrigo & Moreira, Roberto & Strbac, Goran, 2015. "A MILP model for optimising multi-service portfolios of distributed energy storage," Applied Energy, Elsevier, vol. 137(C), pages 554-566.
    9. Khashayar Hamedi & Shahrbanoo Sadeghi & Saeed Esfandi & Mahdi Azimian & Hessam Golmohamadi, 2021. "Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    10. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2019. "A rolling-horizon optimization algorithm for the long term operational scheduling of cogeneration systems," Energy, Elsevier, vol. 184(C), pages 73-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Li & Zongguang Chen & Xuezhi Zhou & Haisheng Chen & Zhi Wang, 2022. "Temperature Regulation Model and Experimental Study of Compressed Air Energy Storage Cavern Heat Exchange System," Sustainability, MDPI, vol. 14(11), pages 1-16, June.
    2. Ma, Ning & Zhao, Pan & Liu, Aijie & Xu, Wenpan & Wang, Jiangfeng, 2024. "Off-design behavior investigation of hydrogen blending-fueled compressed air energy storage system," Energy, Elsevier, vol. 306(C).
    3. Nikita Dmitrievich Senchilo & Denis Anatolievich Ustinov, 2021. "Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption," Energies, MDPI, vol. 14(21), pages 1-25, October.
    4. Jakub Ochmann & Michał Jurczyk & Krzysztof Rusin & Sebastian Rulik & Łukasz Bartela & Wojciech Uchman, 2024. "Solution for Post-Mining Sites: Thermo-Economic Analysis of a Large-Scale Integrated Energy Storage System," Energies, MDPI, vol. 17(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyros Giannelos & Predrag Djapic & Danny Pudjianto & Goran Strbac, 2020. "Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology," Energies, MDPI, vol. 13(4), pages 1-15, February.
    2. Guo, Chaobin & Pan, Lehua & Zhang, Keni & Oldenburg, Curtis M. & Li, Cai & Li, Yi, 2016. "Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant," Applied Energy, Elsevier, vol. 181(C), pages 342-356.
    3. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    4. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    5. Tom Brijs & Daniel Huppmann & Sauleh Siddiqui & Ronnie Belmans, 2016. "Auction-Based Allocation of Shared Electricity Storage Resources through Physical Storage Rights," Discussion Papers of DIW Berlin 1566, DIW Berlin, German Institute for Economic Research.
    6. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    7. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    8. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    9. He, Qing & Li, Guoqing & Lu, Chang & Du, Dongmei & Liu, Wenyi, 2019. "A compressed air energy storage system with variable pressure ratio and its operation control," Energy, Elsevier, vol. 169(C), pages 881-894.
    10. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Rosmin, Norzanah, 2016. "Improving power grid performance using parallel connected Compressed Air Energy Storage and wind turbine system," Renewable Energy, Elsevier, vol. 96(PA), pages 498-508.
    11. Zheng, Longye & Chen, Shaowen & Zhang, Yimin & Zeng, Cong & Guo, Chuanliang, 2024. "Experiment investigation on secondary flow loss and flow control mechanisms in a variable compressor cascade with penny cavities," Energy, Elsevier, vol. 306(C).
    12. Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
    13. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    15. Chen, Wei & Qin, Haoxuan & Zhu, Qing & Bai, Jianshu & Xie, Ningning & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2024. "Optimal design and performance assessment of a proposed constant power operation mode for the constant volume discharging process of advanced adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 221(C).
    16. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.
    17. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    18. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    19. Chen, Wei & Bai, Jianshu & Wang, Guohua & Xie, Ningning & Ma, Linrui & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2023. "First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model," Energy, Elsevier, vol. 263(PC).
    20. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6803-:d:659139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.