IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016487.html
   My bibliography  Save this article

A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park

Author

Listed:
  • Zhao, Wenna
  • Ma, Kai
  • Yang, Jie
  • Guo, Shiliang

Abstract

Implementation of demand response (DR) program in industrial park is an effective way to relieve the pressure of power grid and increase the revenue of users. However, the fluctuation of PV generation and loads impairs the effect of DR program. Therefore, this paper proposes a multi-time scale demand response scheme based on noncooperative game for an industrial park with integrated energy system (IES). In the day-ahead scheduling, industrial users (IUs) and IES participate in the DR program of power grid, and IUs obtains the optimal electricity regulation amount (ERA) through noncooperative game. Further, a new solution scheme is developed to solve the discrete issue of production scheduling of IUs in the game and determine the actual ERA of IUs and IES. Accordingly, the production plans of IUs and operating states of IES equipment are determined, respectively. In the intra-day scheduling, the rolling optimization algorithm is adopted to determine the optimal dispatch plan of IES based on the optimized values of day-ahead scheduling and the short-term forecast of PV generation and IUs’ nonproductive loads. The simulation results indicate that proposed scheme effectively reduces the costs of IUs and increases the revenue of IES in industrial park.

Suggested Citation

  • Zhao, Wenna & Ma, Kai & Yang, Jie & Guo, Shiliang, 2024. "A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016487
    DOI: 10.1016/j.energy.2024.131875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    2. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    3. Rébillé, Yann & Richefort, Lionel, 2014. "Equilibrium existence and uniqueness in network games with additive preferences," European Journal of Operational Research, Elsevier, vol. 232(3), pages 601-606.
    4. Yang, Meng & Liu, Yisheng, 2023. "Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response," Energy, Elsevier, vol. 283(C).
    5. Ma, Kai & Zhang, Rencai & Yang, Jie & Song, Debao, 2023. "Collaborative optimization scheduling of integrated energy system considering user dissatisfaction," Energy, Elsevier, vol. 274(C).
    6. Xu, Weiwei & Zhou, Dan & Huang, Xiaoming & Lou, Boliang & Liu, Dong, 2020. "Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response," Applied Energy, Elsevier, vol. 275(C).
    7. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    8. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    9. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    10. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).
    11. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Dafeng & Yang, Bo & Ma, Chengbin & Wang, Zhaojian & Zhu, Shanying & Ma, Kai & Guan, Xinping, 2022. "Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints," Applied Energy, Elsevier, vol. 317(C).
    2. Wu, Xiao & Yang, Lihua & Zheng, Bingle, 2024. "Joint capacity configuration and demand response optimization of integrated energy system considering economic and dynamic control performance," Energy, Elsevier, vol. 301(C).
    3. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
    4. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
    5. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    6. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    7. Hou, Rui & Deng, Guangzhi & Wu, Minrong & Wang, Wei & Gao, Wei & Chen, Kang & Liu, Lijun & Dehan, Sim, 2023. "Optimum exploitation of an integrated energy system considering renewable sources and power-heat system and energy storage," Energy, Elsevier, vol. 282(C).
    8. Zhu, Xiaoxun & Hu, Ming & Xue, Jinfei & Li, Yuxuan & Han, Zhonghe & Gao, Xiaoxia & Wang, Yu & Bao, Linlin, 2024. "Research on multi-time scale integrated energy scheduling optimization considering carbon constraints," Energy, Elsevier, vol. 302(C).
    9. Wang, L.L. & Xian, R.C. & Jiao, P.H. & Liu, X.H. & Xing, Y.W. & Wang, W., 2024. "Cooperative operation of industrial/commercial/residential integrated energy system with hydrogen energy based on Nash bargaining theory," Energy, Elsevier, vol. 288(C).
    10. Chen, Yuzhu & Guo, Weimin & Du, Na & Yang, Kun & Wang, Jiangjiang, 2024. "Master slave game-based optimization of an off-grid combined cooling and power system coupled with solar thermal and photovoltaics considering carbon cost allocation," Renewable Energy, Elsevier, vol. 229(C).
    11. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).
    12. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    13. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    14. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    15. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    16. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    17. Lionel Richefort, 2018. "Warm-glow giving in networks with multiple public goods," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1211-1238, November.
    18. Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
    19. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    20. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.