IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5618-d1517766.html
   My bibliography  Save this article

Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant

Author

Listed:
  • Krzysztof Michalski

    (AQUA S.A. ul. 1 Maja 23, 43-300 Bielsko-Biała, Poland)

  • Magdalena Kośka-Wolny

    (AQUA S.A. ul. 1 Maja 23, 43-300 Bielsko-Biała, Poland
    University of Economics and Humanities, ul. gen. Wł. Sikorskiego 4-4c, 43-300 Bielsko-Biała, Poland)

  • Krzysztof Chmielowski

    (Department of Natural Gas Engineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland)

  • Dawid Bedla

    (Department of Ecology, Climatology and Air Protection, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland)

  • Agnieszka Petryk

    (Department of Space Management and Social-Economic Geography, Krakow University of Economics, 31-510 Kraków, Poland)

  • Paweł Guzdek

    (Faculty of Environmental and Energy Engineering, Krakow University of Technology, 31-155 Kraków, Poland)

  • Katarzyna Anna Dąbek

    (Department of Natural Gas Engineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland)

  • Michał Gąsiorek

    (Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland)

  • Klaudiusz Grübel

    (Department of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biała, Poland)

  • Wiktor Halecki

    (Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland)

Abstract

Biogas has improved due to technological advancements, environmental awareness, policy support, and research innovation, making it a more cost-effective and environmentally friendly renewable energy source. The Generalized Linear Model (GLM) was employed to examine the relationship between purchased and generated energy from 2007 to 2023. Metrics such as deviance, log likelihood, and dispersion phi were examined to assess model fit. The Mann–Kendall test was utilized to detect trends in energy datasets. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) reduction was significant, exceeding 97% from 2014 to 2023. However, treated sewage displayed limited susceptibility to biological degradation, with COD to BOD5 ratios increasing from 2.28 to 6.59 for raw sewage and from 2.33 to 7.05 for treated sewage by 2023. Additionally, the efficiency of sewage purification processes was calculated, and multivariate regression analysis was conducted on gas composition data. Principal Coordinate Ordination (PCO) and k-means clustering were used for dimensionality reduction and biogas component clustering, respectively. This research showed that biogas from the waste water treatment process can be used, particularly in methane production. Technological advancements have made biogas production more efficient, enhancing energy generation within a circular economy framework.

Suggested Citation

  • Krzysztof Michalski & Magdalena Kośka-Wolny & Krzysztof Chmielowski & Dawid Bedla & Agnieszka Petryk & Paweł Guzdek & Katarzyna Anna Dąbek & Michał Gąsiorek & Klaudiusz Grübel & Wiktor Halecki, 2024. "Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant," Energies, MDPI, vol. 17(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5618-:d:1517766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaojun Feng & Yishi Qian & Peng Xi & Rui Cao & Lu Qin & Shengwei Zhang & Guodong Chai & Mengbo Huang & Kailong Li & Yi Xiao & Lin Xie & Yuxin Song & Dongqi Wang, 2022. "Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    2. Christopher Schmid & Thomas Horschig & Alexandra Pfeiffer & Nora Szarka & Daniela Thrän, 2019. "Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries," Energies, MDPI, vol. 12(19), pages 1-24, October.
    3. Zbigniew Rogala & Michał Stanclik & Dariusz Łuszkiewicz & Ziemowit Malecha, 2023. "Perspectives for the Use of Biogas and Biomethane in the Context of the Green Energy Transformation on the Example of an EU Country," Energies, MDPI, vol. 16(4), pages 1-11, February.
    4. Silva, J. & Gonçalves, J.C. & Rocha, C. & Vilaça, J. & Madeira, L.M., 2024. "Biomethane production from biogas obtained in wastewater treatment plants: Process optimization and economic analysis," Renewable Energy, Elsevier, vol. 220(C).
    5. Ali Dabestani-Rahmatabad & Gabriel Capson-Tojo & Eric Trably & Jean-Philippe Delgenès & Renaud Escudié, 2024. "Assessing the Impact of Organic Loading Rate on Hydrogen Consumption Rates during In Situ Biomethanation," Energies, MDPI, vol. 17(11), pages 1-20, May.
    6. Ogejo, J.A. & Li, L., 2010. "Enhancing biomethane production from flush dairy manure with turkey processing wastewater," Applied Energy, Elsevier, vol. 87(10), pages 3171-3177, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Full & Mathias Trauner & Robert Miehe & Alexander Sauer, 2021. "Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential," Energies, MDPI, vol. 14(22), pages 1-22, November.
    2. Jake A. K. Elliott & Andrew S. Ball, 2021. "Selection of Industrial Trade Waste Resource Recovery Technologies—A Systematic Review," Resources, MDPI, vol. 10(4), pages 1-22, March.
    3. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    4. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    5. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    6. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.
    8. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    9. Chipo Shonhiwa & Yolanda Mapantsela & Golden Makaka & Patrick Mukumba & Ngwarai Shambira, 2023. "Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review," Energies, MDPI, vol. 16(14), pages 1-20, July.
    10. Qiang Wang & Thomas Dogot & Guosheng Wu & Xianlei Huang & Changbin Yin, 2019. "Residents’ Willingness for Centralized Biogas Production in Hebei and Shandong Provinces," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    11. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    12. Sören Mohrmann & Verena Otter, 2022. "Categorisation of Biogas Plant Operators in Germany with Regards to Their Intention to Use Straw Pellets as Innovative and Sustainable Substrate Alternative," Energies, MDPI, vol. 16(1), pages 1-26, December.
    13. Douglas Eldo Pereira de Oliveira & Amanda Carvalho Miranda & Milton Vieira Junior & José Carlos Curvelo Santana & Elias Basile Tambourgi & Francesco Facchini & Raffaello Iavagnilio & Luiz Fernando Rod, 2024. "Economic and Environmental Feasibility of Cogeneration from Food Waste: A Case Study in São Paulo City," Sustainability, MDPI, vol. 16(7), pages 1-17, April.
    14. Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
    15. Jensen, M.B. & Ottosen, L.D.M. & Kofoed, M.V.W., 2021. "H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Dariusz Kusz & Bożena Kusz & Ludwik Wicki & Tomasz Nowakowski & Ryszard Kata & Władysław Brejta & Anna Kasprzyk & Marek Barć, 2024. "The Economic Efficiencies of Investment in Biogas Plants—A Case Study of a Biogas Plant Using Waste from a Dairy Farm in Poland," Energies, MDPI, vol. 17(15), pages 1-23, July.
    17. Józef Ciuła & Iwona Wiewiórska & Marian Banaś & Tadeusz Pająk & Piotr Szewczyk, 2023. "Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy," Energies, MDPI, vol. 16(9), pages 1-12, May.
    18. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    19. Roberto Murano & Natascia Maisano & Roberta Selvaggi & Gioacchino Pappalardo & Biagio Pecorino, 2021. "Critical Issues and Opportunities for Producing Biomethane in Italy," Energies, MDPI, vol. 14(9), pages 1-14, April.
    20. Atreyi Pramanik & Anis Ahmad Chaudhary & Aashna Sinha & Kundan Kumar Chaubey & Mohammad Saquib Ashraf & Nosiba Suliman Basher & Hassan Ahmad Rudayni & Deen Dayal & Sanjay Kumar, 2023. "Nanocatalyst-Based Biofuel Generation: An Update, Challenges and Future Possibilities," Sustainability, MDPI, vol. 15(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5618-:d:1517766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.