IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5579-d1516725.html
   My bibliography  Save this article

A Review of Hydrogen Production Methods and Power Electronics Converter Topologies for Green Hydrogen Applications

Author

Listed:
  • Goncalo Rego

    (ALGORITMI Research Centre, LASI, University of Minho, 4800-058 Guimarães, Portugal)

  • Joao Rocha

    (ALGORITMI Research Centre, LASI, University of Minho, 4800-058 Guimarães, Portugal)

  • Jose A. Faria

    (ALGORITMI Research Centre, LASI, University of Minho, 4800-058 Guimarães, Portugal)

  • Joao L. Afonso

    (ALGORITMI Research Centre, LASI, University of Minho, 4800-058 Guimarães, Portugal)

  • Vitor Monteiro

    (ALGORITMI Research Centre, LASI, University of Minho, 4800-058 Guimarães, Portugal)

Abstract

Hydrogen has been receiving a lot of attention in the last few years since it is seen as a viable, yet not thoroughly dissected alternative for addressing climate change issues, namely in terms of energy storage, and therefore, great investments have been made towards research and development in this area. In this context, a study about the main options for hydrogen production, along with the analysis of a variety of the main power electronics converter topologies for such applications, is presented as the purpose of this paper. Much of the analyzed available literature only discusses a few types of hydrogen production methods, so it becomes crucial to include an analysis of all known types of methods for producing hydrogen, according to their production type, along with the color code associated with each type, and highlighting the respective contextualization, as well as advantages and disadvantages. Regarding the topologies of power electronics converters most suitable for hydrogen production, and more specifically, for green hydrogen production, a list of them was analyzed through the available literature, and a discussion of their advantages and disadvantages is presented. These topologies present the advantage of having a low ripple current output, which is a requirement for the production of hydrogen.

Suggested Citation

  • Goncalo Rego & Joao Rocha & Jose A. Faria & Joao L. Afonso & Vitor Monteiro, 2024. "A Review of Hydrogen Production Methods and Power Electronics Converter Topologies for Green Hydrogen Applications," Energies, MDPI, vol. 17(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5579-:d:1516725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaname Naganuma & Yuhei Sakane, 2023. "Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles," Energies, MDPI, vol. 16(20), pages 1-11, October.
    2. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    3. Somtochukwu Godfrey Nnabuife & Caleb Kwasi Darko & Precious Chineze Obiako & Boyu Kuang & Xiaoxiao Sun & Karl Jenkins, 2023. "A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact," Clean Technol., MDPI, vol. 5(4), pages 1-37, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    2. Kamil Szostek & Damian Mazur & Grzegorz Drałus & Jacek Kusznier, 2024. "Analysis of the Effectiveness of ARIMA, SARIMA, and SVR Models in Time Series Forecasting: A Case Study of Wind Farm Energy Production," Energies, MDPI, vol. 17(19), pages 1-18, September.
    3. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    4. Weilong Wang & Jianlong Wang & Haitao Wu, 2024. "Assessing the potential of energy transition policy in driving renewable energy technology innovation: evidence from new energy demonstration city pilots in China," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-37, October.
    5. Agata Szlapa-Kula & Slawomir Kula, 2023. "Progress on Phenanthroimidazole Derivatives for Light-Emitting Electrochemical Cells: An Overview," Energies, MDPI, vol. 16(13), pages 1-20, July.
    6. Hegazy Rezk & Abdul Ghani Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem, 2023. "Optimized Fractional Maximum Power Point Tracking Using Bald Eagle Search for Thermoelectric Generation System," Energies, MDPI, vol. 16(10), pages 1-15, May.
    7. Ashok Bhansali & Namala Narasimhulu & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Dayanand Lal Narayan, 2023. "A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models," Energies, MDPI, vol. 16(17), pages 1-18, August.
    8. Tareq Salameh & Hegazy Rezk & Usama Issa & Siti Kartom Kamarudin & Mohammad Ali Abdelkareem & Abdul Ghani Olabi & Malek Alkasrawi, 2023. "Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling," Resources, MDPI, vol. 12(11), pages 1-14, November.
    9. Hasan Hamdan & Sharul Sham Dol & Abdelrahman Hosny Gomaa & Aghyad Belal Al Tahhan & Ahmad Al Ramahi & Haya Fares Turkmani & Mohammad Alkhedher & Rahaf Ajaj, 2023. "Experimental and Numerical Study of Novel Vortex Bladeless Wind Turbine with an Economic Feasibility Analysis and Investigation of Environmental Benefits," Energies, MDPI, vol. 17(1), pages 1-30, December.
    10. Agata Szlapa-Kula & Przemyslaw Ledwon & Agnieszka Krawiec & Slawomir Kula, 2023. "Dibenzofulvene Derivatives as Promising Materials for Photovoltaic and Organic Electronics," Energies, MDPI, vol. 16(24), pages 1-40, December.
    11. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    12. Goncalo Marques & Vitor Monteiro & Joao L. Afonso, 2024. "A Full-Controlled Bidirectional Dual-Stage Interleaved Converter for Interfacing AC and DC Power Grids," Energies, MDPI, vol. 17(13), pages 1-16, June.
    13. Katarína Teplická & Samer Khouri & Ibrahim Mehana & Ivana Petrovská, 2024. "Energy Cost Reduction in the Administrative Building by the Implementation of Technical Innovations in Slovakia," Economies, MDPI, vol. 12(10), pages 1-17, September.
    14. Bao Jia & Jianzheng Su, 2024. "Exploring Porous Media for Compressed Air Energy Storage: Benefits, Challenges, and Technological Insights," Energies, MDPI, vol. 17(17), pages 1-20, September.
    15. Debora Mignogna & Márta Szabó & Paolo Ceci & Pasquale Avino, 2024. "Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition," Sustainability, MDPI, vol. 16(16), pages 1-33, August.
    16. Anvit Khare & Karthikeyan Anabalagan, 2023. "A Single-Stage, Multi-Port Hybrid Power Converter Integrating PV and Wind Sources for a Standalone DC System," Energies, MDPI, vol. 16(17), pages 1-17, August.
    17. Ahmad Yasin & Rached Dhaouadi & Shayok Mukhopadhyay, 2024. "A Novel Supercapacitor Model Parameters Identification Method Using Metaheuristic Gradient-Based Optimization Algorithms," Energies, MDPI, vol. 17(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5579-:d:1516725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.