IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1500-d1361271.html
   My bibliography  Save this article

A Novel Supercapacitor Model Parameters Identification Method Using Metaheuristic Gradient-Based Optimization Algorithms

Author

Listed:
  • Ahmad Yasin

    (Mechatronics Graduate Program, College of Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Rached Dhaouadi

    (Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Shayok Mukhopadhyay

    (Electrical & Computer Engineering and Computer Science Department, University of New Haven, West Haven, CT 06516, USA)

Abstract

This paper addresses the critical role of supercapacitors as energy storage systems with a specific focus on their modeling and identification. The lack of a standardized and efficient method for identifying supercapacitor parameters has a definite effect on widespread adoption of supercapacitors, especially in high-power density applications like electric vehicle regenerative braking. The study focuses on parameterizing the Zubieta model for supercapacitors, which involves identifying seven parameters using a hybrid metaheuristic gradient-based optimization (MGBO) approach. The effectiveness of the MGBO method is compared to the existing particle swarm optimization (PSO) and to the following algorithms proposed and developed in this work: ‘modified MGBO’ (M-MGBO) and two PSO variations—one combining PSO and M-MGBO and the other incorporating a local escaping operator (LCEO) with PSO. Metaheuristic- and gradient-based algorithms are both affected by problems associated with locally optimal results and with issues related to enforcing constraints/boundaries on solution values. This work develops the above-mentioned innovations to the MGBO and PSO algorithms for addressing such issues. Rigorous experimentation considering various types of input excitation provides results indicating that hybrid PSO-MGBO and PSO-LCEO outperform traditional PSO, showing improvements of 51% and 94%, respectively, while remaining comparable to M-MGBO. These hybrid approaches effectively estimate Zubieta model parameters. The findings highlight the potential of hybrid optimization strategies in enhancing precision and effectiveness in supercapacitor model parameterization.

Suggested Citation

  • Ahmad Yasin & Rached Dhaouadi & Shayok Mukhopadhyay, 2024. "A Novel Supercapacitor Model Parameters Identification Method Using Metaheuristic Gradient-Based Optimization Algorithms," Energies, MDPI, vol. 17(6), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1500-:d:1361271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhang & Zhenpo Wang & Fengchun Sun & David G. Dorrell, 2014. "Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter," Energies, MDPI, vol. 7(5), pages 1-14, May.
    2. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    3. Rabeh Abbassi & Salem Saidi & Abdelkader Abbassi & Houssem Jerbi & Mourad Kchaou & Bilal Naji Alhasnawi, 2023. "Accurate Key Parameters Estimation of PEMFCs’ Models Based on Dandelion Optimization Algorithm," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    2. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    3. Nayzel I. Jannif & Rahul R. Kumar & Ali Mohammadi & Giansalvo Cirrincione & Maurizio Cirrincione, 2023. "Constrained Least-Squares Parameter Estimation for a Double Layer Capacitor," Energies, MDPI, vol. 16(10), pages 1-19, May.
    4. Kamil Szostek & Damian Mazur & Grzegorz Drałus & Jacek Kusznier, 2024. "Analysis of the Effectiveness of ARIMA, SARIMA, and SVR Models in Time Series Forecasting: A Case Study of Wind Farm Energy Production," Energies, MDPI, vol. 17(19), pages 1-19, September.
    5. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Weilong Wang & Jianlong Wang & Haitao Wu, 2024. "Assessing the potential of energy transition policy in driving renewable energy technology innovation: evidence from new energy demonstration city pilots in China," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-37, October.
    7. Agata Szlapa-Kula & Slawomir Kula, 2023. "Progress on Phenanthroimidazole Derivatives for Light-Emitting Electrochemical Cells: An Overview," Energies, MDPI, vol. 16(13), pages 1-20, July.
    8. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Sun, Fengchun & Dorrell, David G., 2018. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1868-1878.
    9. Kai Wang & Liwei Li & Huaixian Yin & Tiezhu Zhang & Wubo Wan, 2015. "Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    10. Kai Yit Kok & Parvathy Rajendran, 2016. "Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    11. Tae-Won Noh & Jung-Hoon Ahn & Byoung Kuk Lee, 2019. "Cranking Capability Estimation Algorithm Based on Modeling and Online Update of Model Parameters for Li-Ion SLI Batteries," Energies, MDPI, vol. 12(17), pages 1-14, September.
    12. Hegazy Rezk & Abdul Ghani Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem, 2023. "Optimized Fractional Maximum Power Point Tracking Using Bald Eagle Search for Thermoelectric Generation System," Energies, MDPI, vol. 16(10), pages 1-15, May.
    13. Ashok Bhansali & Namala Narasimhulu & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Dayanand Lal Narayan, 2023. "A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models," Energies, MDPI, vol. 16(17), pages 1-18, August.
    14. Tareq Salameh & Hegazy Rezk & Usama Issa & Siti Kartom Kamarudin & Mohammad Ali Abdelkareem & Abdul Ghani Olabi & Malek Alkasrawi, 2023. "Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling," Resources, MDPI, vol. 12(11), pages 1-14, November.
    15. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Hasan Hamdan & Sharul Sham Dol & Abdelrahman Hosny Gomaa & Aghyad Belal Al Tahhan & Ahmad Al Ramahi & Haya Fares Turkmani & Mohammad Alkhedher & Rahaf Ajaj, 2023. "Experimental and Numerical Study of Novel Vortex Bladeless Wind Turbine with an Economic Feasibility Analysis and Investigation of Environmental Benefits," Energies, MDPI, vol. 17(1), pages 1-30, December.
    17. Mustafa Saglam & Xiaojing Lv & Catalina Spataru & Omer Ali Karaman, 2024. "Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning," Energies, MDPI, vol. 17(4), pages 1-22, February.
    18. Zhilei Ge & Suyun Liu & Guopeng Li & Yan Huang & Yanni Wang, 2017. "Error model of geomagnetic-field measurement and extended Kalman-filter based compensation method," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    19. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
    20. Agata Szlapa-Kula & Przemyslaw Ledwon & Agnieszka Krawiec & Slawomir Kula, 2023. "Dibenzofulvene Derivatives as Promising Materials for Photovoltaic and Organic Electronics," Energies, MDPI, vol. 16(24), pages 1-40, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1500-:d:1361271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.