IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3828-d582204.html
   My bibliography  Save this article

Fault Ride Through in Grid Integrated Hybrid System Using FACTS Device and Electric Vehicle Charging Station

Author

Listed:
  • Uthra R.

    (Department of Electrical & Electronics, SRM Institute of Science & Technology, Kattankulathur 603203, India)

  • Suchitra D.

    (Department of Electrical & Electronics, SRM Institute of Science & Technology, Kattankulathur 603203, India)

Abstract

Adopting eco-friendly solutions is the need of the hour in order to downscale carbon emissions and the fast depletion of fossil fuels. Hybrid energy systems provide one such optimistic sustainable solution for power generation in a grid integrated system as well as for stand-alone applications. With grid integrated systems, there are many grid codes to be maintained such as voltage stability, frequency deviation and Fault Ride Through Capability (FRT). In a hybrid system, the propensity of the PV/Wind system to remain connected at the moment of short electric fault is identified as FRT. This paper elucidates the voltage compensation using an Electric Vehicle (EV) charging station or a Flexible AC Transmission System (FACTS) device depending on the intensity of fault that occurs at the Point of Common Coupling (PCC) in grid integrated hybrid systems. When a fault occurs at the PCC, depending on the intensity of the voltage sag either the EV charging station or a FACTS device, namely a Dynamic Voltage Restore (DVR), provides the voltage compensation. The voltage obtained from an EV charging station or DVR is conditioned using power converters and fed to the PCC to even out the discrepancy in the voltage that is effected due to the fault. Even though charges electric vehicles continuously, the EV charging station gives priority to supply voltage for compensation whenever a fault occurs at the grid. If the intensity of voltage sag due to fault is between 0.9 to 0.51 p.u, the EV charging station provides voltage compensation, and for voltage sag between 0.5 to 0.2 p.u, DVR takes over to provide voltage compensation for the continuous sustainability of the grid. The proposed system makes use of an existing source such as an EV charging station as a supplementary device to provide compensation, and also has a backup supplementary device DVR in case of any non-availability of the EV charging station. Thus, the voltage compensation in turn facilitates the parameters such as DC link voltage and the grid voltage to stay within the pertinent limits in the event of a fault at the grid. The system was simulated using MATLAB Simulink and the results were verified.

Suggested Citation

  • Uthra R. & Suchitra D., 2021. "Fault Ride Through in Grid Integrated Hybrid System Using FACTS Device and Electric Vehicle Charging Station," Energies, MDPI, vol. 14(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3828-:d:582204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    2. Moghadasi, Amirhasan & Sarwat, Arif & Guerrero, Josep M., 2016. "A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 823-839.
    3. Emiyamrew Minaye Molla & Cheng-Chien Kuo, 2020. "Voltage Quality Enhancement of Grid-Integrated PV System Using Battery-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(21), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    2. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    3. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    4. Xuejun Zheng & Shaorong Wang & Zia Ullah & Mengmeng Xiao & Chang Ye & Zhangping Lei, 2021. "A Novel Optimization Method for a Multi-Year Planning Scheme of an Active Distribution Network in a Large Planning Zone," Energies, MDPI, vol. 14(12), pages 1-16, June.
    5. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    6. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    7. Tommy Lundgren & Mattias Vesterberg, 2024. "Efficiency in electricity distribution in Sweden and the effects of small-scale generation, electric vehicles and dynamic tariffs," Journal of Productivity Analysis, Springer, vol. 62(2), pages 121-137, October.
    8. Theron Smith & Joseph Garcia & Gregory Washington, 2022. "Novel PEV Charging Approaches for Extending Transformer Life," Energies, MDPI, vol. 15(12), pages 1-17, June.
    9. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    10. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.
    11. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    12. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    13. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    14. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    15. Wen, Le & Sheng, Mingyue Selena & Sharp, Basil & Meng, Tongyu & Du, Bo & Yi, Ming & Suomalainen, Kiti & Gkritza, Konstantina, 2023. "Exploration of the nexus between solar potential and electric vehicle uptake: A case study of Auckland, New Zealand," Energy Policy, Elsevier, vol. 173(C).
    16. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    17. Cheng-I Chen & Yeong-Chin Chen & Chung-Hsien Chen & Yung-Ruei Chang, 2020. "Voltage Regulation Using Recurrent Wavelet Fuzzy Neural Network-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(23), pages 1-19, November.
    18. Brian Ospina Agudelo & Walter Zamboni & Eric Monmasson, 2021. "A Comparison of Time-Domain Implementation Methods for Fractional-Order Battery Impedance Models," Energies, MDPI, vol. 14(15), pages 1-23, July.
    19. Kenji Araki & Yasuyuki Ota & Anju Maeda & Minoru Kumano & Kensuke Nishioka, 2023. "Solar Electric Vehicles as Energy Sources in Disaster Zones: Physical and Social Factors," Energies, MDPI, vol. 16(8), pages 1-25, April.
    20. Guo, Qi & Xiao, Fan & Tu, Chunming & Jiang, Fei & Zhu, Rongwu & Ye, Jian & Gao, Jiayuan, 2022. "An overview of series-connected power electronic converter with function extension strategies in the context of high-penetration of power electronics and renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3828-:d:582204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.