IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4362-d1157262.html
   My bibliography  Save this article

Performance Enhancement of Grid-Connected Renewable Energy Systems Using UPFC

Author

Listed:
  • M. Osama abed el-Raouf

    (Electrical Engineering Department, Housing & Building National Research Center (HBRC), Cairo 12611, Egypt)

  • Soad A. A. Mageed

    (Electrical Engineering Department, Faculty of Engineering at Shoubra, Elmadina Higher Institute, Benha University, Cairo 13511, Egypt)

  • M. M. Salama

    (Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 13511, Egypt)

  • Mohamed I. Mosaad

    (Electrical & Electronics Engineering Technology Department, Yanbu Industrial College (YIC), Royal Commission Yanbu Colleges & Institutes, Alnahdah, Yanbu Al Sinaiyah, Yanbu 46452, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Damietta University, Damietta 34511, Egypt)

  • H. A. AbdelHadi

    (Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 13511, Egypt)

Abstract

No one denies the importance of renewable energy sources in modern power systems in terms of sustainability and environmental conservation. However, due to their reliance on environmental change, they are unreliable systems. This paper uses a Unified Power Flow Controller (UPFC) to enhance the reliability and performance of grid-tied renewable energy systems. This system consists of two renewable sources, namely photovoltaic cells (PV) and wind turbines (WTs). The UPFC was selected for its unique advantage in both active and reactive power control. The UPFC is controlled with an optimized Fractional Order Proportional–Integral–Derivative (FOPID) controller. The parameters of this controller were tuned using an Atomic Search Optimization (ASO) algorithm. Simulation results confirm the efficiency of the suggested controller in supporting the reliability and performance of the hybrid power system during some disturbance events including voltage sag, swell, and unbalanced loading. In addition, power quality can be improved through reducing the total harmonic distortion. It is worth mentioning that two maximum point tracking techniques had been included for the PV and WT systems separately. MATLAB/SIMULINK 2021a software was used to model the system.

Suggested Citation

  • M. Osama abed el-Raouf & Soad A. A. Mageed & M. M. Salama & Mohamed I. Mosaad & H. A. AbdelHadi, 2023. "Performance Enhancement of Grid-Connected Renewable Energy Systems Using UPFC," Energies, MDPI, vol. 16(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4362-:d:1157262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anwar, Ahsan & Siddique, Muhammad & Eyup Dogan, & Sharif, Arshian, 2021. "The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression," Renewable Energy, Elsevier, vol. 164(C), pages 956-967.
    2. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    3. Emiyamrew Minaye Molla & Cheng-Chien Kuo, 2020. "Voltage Quality Enhancement of Grid-Integrated PV System Using Battery-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(21), pages 1-16, November.
    4. Ch. Rami Reddy & B. Srikanth Goud & Flah Aymen & Gundala Srinivasa Rao & Edson C. Bortoni, 2021. "Power Quality Improvement in HRES Grid Connected System with FOPID Based Atom Search Optimization Technique," Energies, MDPI, vol. 14(18), pages 1-29, September.
    5. B. Srikanth Goud & Ch. Rami Reddy & Mohit Bajaj & Ehab E. Elattar & Salah Kamel, 2021. "Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller," Sustainability, MDPI, vol. 13(20), pages 1-33, October.
    6. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiping Yang & Cong Liu & Limin Yin, 2024. "Topological Structure and Control Strategy of E-UPFC," Energies, MDPI, vol. 17(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dheyaa Ied Mahdi & Goksu Gorel, 2022. "Design and Control of Three-Phase Power System with Wind Power Using Unified Power Quality Conditioner," Energies, MDPI, vol. 15(19), pages 1-21, September.
    2. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    3. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    4. Murshed, Muntasir & Saboori, Behnaz & Madaleno, Mara & Wang, Hong & Doğan, Buhari, 2022. "Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: The role of economic complexity in the G7 countries," Renewable Energy, Elsevier, vol. 190(C), pages 664-674.
    5. Daniela Cristina Momete & Manuel Mihail Momete, 2021. "Map and Track the Performance in Education for Sustainable Development across the European Union," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    6. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    7. Feng, Xinzhen & Zhou, Dequn & Hussain, Tufail, 2024. "An investigation of fintech governance, natural resources and government stability on sustainability: Policy suggestions under the SDGs theme," Resources Policy, Elsevier, vol. 96(C).
    8. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    9. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Silviu Nate & Yuriy Bilan & Mariia Kurylo & Olena Lyashenko & Piotr Napieralski & Ganna Kharlamova, 2021. "Mineral Policy within the Framework of Limited Critical Resources and a Green Energy Transition," Energies, MDPI, vol. 14(9), pages 1-32, May.
    11. Zhou, Yuanxiang & Adebayo, Tomiwa Sunday & Yin, Weichuan & Abbas, Shujaat, 2023. "The co-movements among renewable energy, total environmental tax, and ecological footprint in the United Kingdom: Evidence from wavelet local multiple correlation analysis," Energy Economics, Elsevier, vol. 126(C).
    12. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    13. Ehigiamusoe, Kizito Uyi & Dogan, Eyup, 2022. "The role of interaction effect between renewable energy consumption and real income in carbon emissions: Evidence from low-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Chien, FengSheng, 2022. "How renewable energy and non-renewable energy affect environmental excellence in N-11 economies?," Renewable Energy, Elsevier, vol. 196(C), pages 526-534.
    15. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    16. Lee, Chien-Chiang & Chen, Mei-Ping & Yuan, Zihao, 2023. "Is information and communication technology a driver for renewable energy?," Energy Economics, Elsevier, vol. 124(C).
    17. Xie, Peijun & Jamaani, Fouad, 2022. "Does green innovation, energy productivity and environmental taxes limit carbon emissions in developed economies: Implications for sustainable development," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 66-78.
    18. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    19. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    20. Shang, Yunfeng & Han, Ding & Gozgor, Giray & Mahalik, Mantu Kumar & Sahoo, Bimal Kishore, 2022. "The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States," Renewable Energy, Elsevier, vol. 197(C), pages 654-667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4362-:d:1157262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.