IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5431-d1510663.html
   My bibliography  Save this article

Enhancing Regional Wind Power Forecasting through Advanced Machine-Learning and Feature-Selection Techniques

Author

Listed:
  • Nabi Taheri

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy)

  • Mauro Tucci

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy)

Abstract

In this study, an in-depth analysis is presented on forecasting aggregated wind power production at the regional level, using advanced Machine-Learning (ML) techniques and feature-selection methods. The main problem consists of selecting the wind speed measuring points within a large region, as the wind plant locations are assumed to be unknown. For this purpose, the main cities (province capitals) are considered as possible features and four feature-selection methods are explored: Pearson correlation, Spearman correlation, mutual information, and Chi-squared test with Fisher score. The results demonstrate that proper feature selection significantly improves prediction performance, particularly when dealing with high-dimensional data and regional forecasting challenges. Additionally, the performance of five prominent machine-learning models is analyzed: Long Short-Term Memory (LSTM) networks, Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Convolutional Neural Networks (CNNs), and Extreme-Learning Machines (ELMs). Through rigorous testing, LSTM is identified as the most effective model for the case study in northern Italy. This study offers valuable insights into optimizing wind power forecasting models and underscores the importance of feature selection in achieving reliable and accurate predictions.

Suggested Citation

  • Nabi Taheri & Mauro Tucci, 2024. "Enhancing Regional Wind Power Forecasting through Advanced Machine-Learning and Feature-Selection Techniques," Energies, MDPI, vol. 17(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5431-:d:1510663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Osório, G.J. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information," Renewable Energy, Elsevier, vol. 75(C), pages 301-307.
    2. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    3. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    5. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    6. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    7. Sizhou Sun & Jingqi Fu & Ang Li, 2019. "A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches," Energies, MDPI, vol. 12(18), pages 1-22, September.
    8. Safae Margoum & Bekkay Hajji & Stefano Aneli & Giuseppe Marco Tina & Antonio Gagliano, 2024. "Optimizing Nanofluid Hybrid Solar Collectors through Artificial Intelligence Models," Energies, MDPI, vol. 17(10), pages 1-24, May.
    9. Takuji Matsumoto & Yuji Yamada, 2021. "Comprehensive and Comparative Analysis of GAM-Based PV Power Forecasting Models Using Multidimensional Tensor Product Splines against Machine Learning Techniques," Energies, MDPI, vol. 14(21), pages 1-22, November.
    10. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    11. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    12. Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
    13. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    14. Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    15. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    16. Amith Khandakar & Annaufal Rizqullah & Anas Ashraf Abdou Berbar & Mohammad Rafi Ahmed & Atif Iqbal & Muhammad E. H. Chowdhury & S. M. Ashfaq Uz Zaman, 2020. "A Case Study to Identify the Hindrances to Widespread Adoption of Electric Vehicles in Qatar," Energies, MDPI, vol. 13(15), pages 1-20, August.
    17. Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
    18. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    19. Weian Guo & Lei Zhu & Lei Wang & Qidi Wu & Fanrong Kong, 2019. "An Entropy-Assisted Particle Swarm Optimizer for Large-Scale Optimization Problem," Mathematics, MDPI, vol. 7(5), pages 1-12, May.
    20. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5431-:d:1510663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.