IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3994-d393677.html
   My bibliography  Save this article

A Case Study to Identify the Hindrances to Widespread Adoption of Electric Vehicles in Qatar

Author

Listed:
  • Amith Khandakar

    (Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar)

  • Annaufal Rizqullah

    (Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar)

  • Anas Ashraf Abdou Berbar

    (Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar)

  • Mohammad Rafi Ahmed

    (Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar)

  • Atif Iqbal

    (Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar)

  • Muhammad E. H. Chowdhury

    (Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar)

  • S. M. Ashfaq Uz Zaman

    (Qatar Emiri Naval Forces, Gulf Arabian, P.O. Box 2237, Doha, Qatar)

Abstract

The adoption of electric vehicles (EVs) have proven to be a crucial factor to decreasing the emission of greenhouse gases (GHG) into the atmosphere. However, there are various hurdles that impede people from purchasing EVs. For example, long charging time, short driving range, cost and insufficient charging infrastructures available, etc. This article reports the public perception of EV-adoption using statistical analyses and proposes some recommendations for improving EV-adoption in Qatar. User perspectives on EV-adoption barriers in Qatar were investigated based on survey questionnaires. The survey questionnaires were based on similar studies done in other regions of the world. The study attempted to look at different perspectives of the adoption of EV, when asked to a person who is aware of EVs (technical respondents—people studying/working at universities/research centers and policy makers) or a person who may or may not be aware of EVs (non-technical respondents—people working in banks, governments and private non-academic organizations, etc.). Cumulative survey responses from the two groups were compared and analyzed using two-sample t -test statistical analysis. Detailed analyses showed that—among various major hindrances—raising of public awareness of such greener modes of transportation, the availability of charging options in more places and policy incentives towards EVs would play a major role in EV-adoption. The authors provide recommendations that—along with government incentives—could help make a gradual shift to a greater number of EVs convenient for people of Qatar. The proposed systematic approach for such a study and analysis may help in streamlining research on policies, infrastructures and technologies for efficient penetration of EVs in Qatar.

Suggested Citation

  • Amith Khandakar & Annaufal Rizqullah & Anas Ashraf Abdou Berbar & Mohammad Rafi Ahmed & Atif Iqbal & Muhammad E. H. Chowdhury & S. M. Ashfaq Uz Zaman, 2020. "A Case Study to Identify the Hindrances to Widespread Adoption of Electric Vehicles in Qatar," Energies, MDPI, vol. 13(15), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3994-:d:393677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.
    2. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    3. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    4. Nasser Ahmad & Amith Khandakar & Amir El-Tayeb & Kamel Benhmed & Atif Iqbal & Farid Touati, 2018. "Novel Design for Thermal Management of PV Cells in Harsh Environmental Conditions," Energies, MDPI, vol. 11(11), pages 1-9, November.
    5. Tohid Harighi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Eklas Hossain, 2018. "An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology," Energies, MDPI, vol. 11(8), pages 1-18, August.
    6. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    7. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Novotny & Inez Szeberin & Sándor Kovács & Domicián Máté, 2022. "National Culture and the Market Development of Battery Electric Vehicles in 21 Countries," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra, Minal, 2022. "Investigating the impact of policies, socio-demography and national commitments on electric-vehicle demand: Cross-country study," Journal of Transport Geography, Elsevier, vol. 103(C).
    2. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    3. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    4. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    5. Ko, Sungmin & Shin, Jungwoo, 2023. "Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, Elsevier, vol. 173(C).
    6. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    7. Dongming Wu & Liukai Yu & Qianqian Zhang & Yangyang Jiao & Yuhe Wu, 2021. "Materialism, Ecological Consciousness and Purchasing Intention of Electric Vehicles: An Empirical Analysis among Chinese Consumers," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    8. Liu, Yajie & Dong, Feng & Li, Guoqing & Huang, Jianheng & Yang, Shanshan & Wang, Yulong, 2023. "Public willingness to support the policy of banning gasoline vehicles sales and its internal mechanism," Energy, Elsevier, vol. 271(C).
    9. Chakraborty, Rahul & Chakravarty, Sujoy, 2023. "Factors affecting acceptance of electric two-wheelers in India: A discrete choice survey," Transport Policy, Elsevier, vol. 132(C), pages 27-41.
    10. Christian Thiel & Anastasios Tsakalidis & Arnulf Jäger-Waldau, 2020. "Will Electric Vehicles Be Killed (again) or Are They the Next Mobility Killer App?," Energies, MDPI, vol. 13(7), pages 1-10, April.
    11. Qian, Xiaodong & Gkritza, Konstantina, 2024. "Spatial and temporal variance in public perception of electric vehicles: A comparative analysis of adoption pioneers and laggards using twitter data," Transport Policy, Elsevier, vol. 149(C), pages 150-162.
    12. Sommer, Stephan & Vance, Colin, 2021. "Do more chargers mean more electric cars?," Ruhr Economic Papers 893, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Jose Esteves & Daniel Alonso-Martínez & Guillermo de Haro, 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    14. Liu, Yajie & Dong, Feng & Li, Guoqing & Pan, Yuling & Qin, Chang & Yang, Shanshan & Li, Jingyun, 2023. "Exploring the factors influencing public support willingness for banning gasoline vehicle sales policy: A grounded theory approach," Energy, Elsevier, vol. 283(C).
    15. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    16. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    17. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    18. Higueras-Castillo, Elena & Kalinic, Zoran & Marinkovic, Veljko & Liébana-Cabanillas, Francisco J., 2020. "A mixed analysis of perceptions of electric and hybrid vehicles," Energy Policy, Elsevier, vol. 136(C).
    19. Mekky, Maher F. & Collins, Alan R., 2024. "The Impact of state policies on electric vehicle adoption -A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    20. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3994-:d:393677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.