IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5844-d1526625.html
   My bibliography  Save this article

Panel Temperature Dependence on Atmospheric Parameters of an Operative Photovoltaic Park in Semi-Arid Zones Using Artificial Neural Networks

Author

Listed:
  • Sonia Montecinos

    (Departamento de Física, Facultad de Ciencias, Universidad de La Serena, La Serena 1700000, Chile)

  • Carlos Rodríguez

    (Departamento de Química, Facultad de Ciencias, Universidad de La Serena, La Serena 1700000, Chile)

  • Andrea Torrejón

    (Departamento de Física, Facultad de Ciencias, Universidad de La Serena, La Serena 1700000, Chile)

  • Jorge Cortez

    (Departamento de Ingeniería de Minas, Facultad de Ingeniería, Universidad de La Serena, La Serena 1700000, Chile)

  • Marcelo Jaque

    (Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, La Serena 1700000, Chile)

Abstract

The performance of photovoltaic solar panels is influenced by their temperature, so there is a need for a tool that can accurately and instantly predict the panel temperature. This paper presents an analysis of the panel temperature’s dependence on atmospheric parameters at an operational photovoltaic park in the semi-arid north of Chile using Artificial Neural Networks (ANNs). We applied the back-propagation algorithm to train the model by using the atmospheric variables tilted solar radiation (TSR), air temperature, and wind speed measured in the park. The ANN model’s effectiveness was evaluated by comparing it to five different deterministic models: the Standard model, King’s model, Faiman’s model, Mattei’s model, and Skoplaki’s model. Additionally, we examined the sensitivity of panel temperature to changes in air temperature, TSR, and wind speed. Our findings show that the ANN model had the best prediction accuracy for panel temperature, with a Root Mean Squared Error (RMSE) of 1.59 °C, followed by Mattei’s model with a higher RMSE of 3.30 °C. We also determined that air temperature has the most significant impact on panel temperature, followed by TSR and wind speed. These results demonstrate that the ANN is a powerful tool for predicting panel temperature with high accuracy.

Suggested Citation

  • Sonia Montecinos & Carlos Rodríguez & Andrea Torrejón & Jorge Cortez & Marcelo Jaque, 2024. "Panel Temperature Dependence on Atmospheric Parameters of an Operative Photovoltaic Park in Semi-Arid Zones Using Artificial Neural Networks," Energies, MDPI, vol. 17(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5844-:d:1526625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.
    2. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    3. Fouilloy, Alexis & Voyant, Cyril & Notton, Gilles & Motte, Fabrice & Paoli, Christophe & Nivet, Marie-Laure & Guillot, Emmanuel & Duchaud, Jean-Laurent, 2018. "Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability," Energy, Elsevier, vol. 165(PA), pages 620-629.
    4. Ma, Tao & Yang, Hongxing & Lu, Lin, 2017. "Long term performance analysis of a standalone photovoltaic system under real conditions," Applied Energy, Elsevier, vol. 201(C), pages 320-331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    3. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    4. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Narasingamurthi, Kulasekharan & Saidur, R., 2022. "Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study," Renewable Energy, Elsevier, vol. 201(P1), pages 224-239.
    5. Krzysztof Barbusiński & Paweł Kwaśnicki & Anna Gronba-Chyła & Agnieszka Generowicz & Józef Ciuła & Bartosz Szeląg & Francesco Fatone & Agnieszka Makara & Zygmunt Kowalski, 2024. "Influence of Environmental Conditions on the Electrical Parameters of Side Connectors in Glass–Glass Photovoltaic Modules," Energies, MDPI, vol. 17(3), pages 1-13, January.
    6. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    7. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    8. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    9. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    10. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    11. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    12. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
    13. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    14. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    15. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    16. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    17. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    18. Boumediene Ladjal & Imad Eddine Tibermacine & Mohcene Bechouat & Moussa Sedraoui & Christian Napoli & Abdelaziz Rabehi & Djemoui Lalmi, 2024. "Hybrid models for direct normal irradiance forecasting: a case study of Ghardaia zone (Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14703-14725, December.
    19. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    20. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5844-:d:1526625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.