IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4670-d1481313.html
   My bibliography  Save this article

Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector

Author

Listed:
  • Hessam Golmohamadi

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Saeed Golestan

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Rakesh Sinha

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Birgitte Bak-Jensen

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

The integration of renewable energy sources (RESs) is rapidly increasing within energy systems worldwide. However, this shift introduces intermittency and uncertainty on the supply side. To hedge against RES intermittency, demand-side flexibility introduces a practical solution. Therefore, further studies are required to unleash demand-side flexibility in power systems. This flexibility is relevant across various sectors of power systems, including residential, industrial, commercial, and agricultural sectors. This paper reviews the key aspects of demand-side flexibility within the residential sector. To achieve this objective, a general introduction to demand flexibility across the four sectors is provided. As a contribution of this paper, and in comparison with previous studies, household appliances are classified based on their flexibility and controllability. The flexibility potential of key residential demands, including heat pumps, district heating, electric vehicles, and battery systems, is then reviewed. Another contribution of this paper is the exploration of demand-side flexibility scheduling under uncertainty, examining three approaches: stochastic programming, robust optimization, and information-gap decision theory. Additionally, the integration of demand flexibility into short-term electricity markets with high-RES penetration is discussed. Finally, the key objective functions and simulation software used in the study of demand-side flexibility are reviewed.

Suggested Citation

  • Hessam Golmohamadi & Saeed Golestan & Rakesh Sinha & Birgitte Bak-Jensen, 2024. "Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector," Energies, MDPI, vol. 17(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4670-:d:1481313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saedi, Isam & Mhanna, Sleiman & Mancarella, Pierluigi, 2021. "Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking," Applied Energy, Elsevier, vol. 303(C).
    2. Lu, Renzhi & Bai, Ruichang & Huang, Yuan & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2021. "Data-driven real-time price-based demand response for industrial facilities energy management," Applied Energy, Elsevier, vol. 283(C).
    3. Golmohamadi, Hessam & Asadi, Amin, 2020. "A multi-stage stochastic energy management of responsive irrigation pumps in dynamic electricity markets," Applied Energy, Elsevier, vol. 265(C).
    4. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    5. Zhang, Suhan & Chen, Shibo & Gu, Wei & Lu, Shuai & Chung, Chi Yung, 2024. "Dynamic optimal energy flow of integrated electricity and gas systems in continuous space," Applied Energy, Elsevier, vol. 375(C).
    6. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
    7. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).
    8. Akbari, Ehsan & Mousavi Shabestari, Seyed Farzin & Pirouzi, Sasan & Jadidoleslam, Morteza, 2023. "Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management," Renewable Energy, Elsevier, vol. 206(C), pages 295-308.
    9. Farzamkia, Saleh & Ranjbar, Hossein & Hatami, Alireza & Iman-Eini, Hossein, 2016. "A novel PSO (Particle Swarm Optimization)-based approach for optimal schedule of refrigerators using experimental models," Energy, Elsevier, vol. 107(C), pages 707-715.
    10. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    11. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    12. Dapeng Wang & Cong Zhang & Wanqing Jia & Qian Liu & Long Cheng & Huaizhi Yang & Yufeng Luo & Na Kuang, 2022. "A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation," Energies, MDPI, vol. 15(20), pages 1-19, October.
    13. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2020. "Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators," Applied Energy, Elsevier, vol. 279(C).
    14. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    15. Golmohamadi, Hessam, 2021. "Stochastic energy optimization of residential heat pumps in uncertain electricity markets," Applied Energy, Elsevier, vol. 303(C).
    16. Moshövel, Janina & Kairies, Kai-Philipp & Magnor, Dirk & Leuthold, Matthias & Bost, Mark & Gährs, Swantje & Szczechowicz, Eva & Cramer, Moritz & Sauer, Dirk Uwe, 2015. "Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption," Applied Energy, Elsevier, vol. 137(C), pages 567-575.
    17. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Heydarian-Forushani, E. & Golshan, M.E.H. & Shafie-khah, M., 2016. "Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration," Applied Energy, Elsevier, vol. 179(C), pages 338-349.
    19. Hari Prasad Devarapalli & Venkata Samba Sesha Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2021. "Demand-Side Management for Improvement of the Power Quality in Smart Homes Using Non-Intrusive Identification of Appliance Usage Patterns with the True Power Factor," Energies, MDPI, vol. 14(16), pages 1-19, August.
    20. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    21. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, March.
    22. Parantapa Sawant & Oscar Villegas Mier & Michael Schmidt & Jens Pfafferott, 2021. "Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC," Energies, MDPI, vol. 14(23), pages 1-15, November.
    23. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    24. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2021. "Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles," Applied Energy, Elsevier, vol. 290(C).
    25. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    4. Golmohamadi, Hessam, 2021. "Stochastic energy optimization of residential heat pumps in uncertain electricity markets," Applied Energy, Elsevier, vol. 303(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    7. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    8. Guelpa, Elisa, 2020. "Impact of network modelling in the analysis of district heating systems," Energy, Elsevier, vol. 213(C).
    9. Bhaskar P. Rimal & Cuiyu Kong & Bikrant Poudel & Yong Wang & Pratima Shahi, 2022. "Smart Electric Vehicle Charging in the Era of Internet of Vehicles, Emerging Trends, and Open Issues," Energies, MDPI, vol. 15(5), pages 1-24, March.
    10. Kontu, K. & Rinne, S. & Junnila, S., 2019. "Introducing modern heat pumps to existing district heating systems – Global lessons from viable decarbonizing of district heating in Finland," Energy, Elsevier, vol. 166(C), pages 862-870.
    11. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2021. "Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles," Applied Energy, Elsevier, vol. 290(C).
    12. Edgar Ramos Muñoz & Faryar Jabbari, 2022. "An Octopus Charger-Based Smart Protocol for Battery Electric Vehicle Charging at a Workplace Parking Structure," Energies, MDPI, vol. 15(17), pages 1-25, September.
    13. Skalyga, Mikhail & Wu, Qiuwei & Zhang, Menglin, 2021. "Uncertainty-fully-aware coordinated dispatch of integrated electricity and heat system," Energy, Elsevier, vol. 224(C).
    14. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).
    15. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    16. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    17. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    18. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    19. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4670-:d:1481313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.