IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics0306261921009727.html
   My bibliography  Save this article

Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking

Author

Listed:
  • Saedi, Isam
  • Mhanna, Sleiman
  • Mancarella, Pierluigi

Abstract

Despite the direct physical coupling between them, electricity and gas networks were traditionally modelled and operated independently. However, the heavy reliance on gas-fired generators to balance intermittent generation from renewable energy sources (RES), and the promising role of green hydrogen in decarbonising the natural gas system, have prompted a paradigm shift towards integrated electricity and gas system (IEGS) modelling. While many previous studies investigated the role of hydrogen in future low-carbon energy systems, a detailed assessment of hydrogen system integration into the electricity and gas transmission networks is still not addressed. Therefore, this paper presents a novel IEGS model with green hydrogen injections and gas composition tracking. The electricity system is modelled as a unit commitment model, formulated as a mixed-integer linear programming problem, and the gas system is modelled as a steady-state optimal gas flow (OGF). The developed model is demonstrated on two sets of case studies. The first case study validates the proposed OGF methodology on a small meshed gas test network, whereas the second case study demonstrates the applicability of the overall IEGS model with green hydrogen injection on the large-scale, real-world electricity and gas transmission networks of the state of Victoria (Australia). Results show that the proposed methodology can accurately capture the variations in gas flow direction while maintaining the hydrogen molar fraction within limits under hydrogen injections from multiple locations. Moreover, the amount of injected hydrogen not only depends on the level of RES curtailment, but also on local gas network constraints and local demand.

Suggested Citation

  • Saedi, Isam & Mhanna, Sleiman & Mancarella, Pierluigi, 2021. "Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009727
    DOI: 10.1016/j.apenergy.2021.117598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921009727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abeysekera, M. & Wu, J. & Jenkins, N. & Rees, M., 2016. "Steady state analysis of gas networks with distributed injection of alternative gas," Applied Energy, Elsevier, vol. 164(C), pages 991-1002.
    2. Qadrdan, Meysam & Ameli, Hossein & Strbac, Goran & Jenkins, Nicholas, 2017. "Efficacy of options to address balancing challenges: Integrated gas and electricity perspectives," Applied Energy, Elsevier, vol. 190(C), pages 181-190.
    3. Guandalini, Giulio & Colbertaldo, Paolo & Campanari, Stefano, 2017. "Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections," Applied Energy, Elsevier, vol. 185(P2), pages 1712-1723.
    4. Cavana, Marco & Mazza, Andrea & Chicco, Gianfranco & Leone, Pierluigi, 2021. "Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation," Applied Energy, Elsevier, vol. 290(C).
    5. Chaczykowski, Maciej & Zarodkiewicz, Paweł, 2017. "Simulation of natural gas quality distribution for pipeline systems," Energy, Elsevier, vol. 134(C), pages 681-698.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Navarro & Hugo Rojas & Jaime E. Luyo & Jose L. Silva & Yuri P. Molina, 2024. "Impacts of Natural Gas Pipeline Congestion on the Integrated Gas–Electricity Market in Peru," Energies, MDPI, vol. 17(18), pages 1-22, September.
    2. Ye, Jianan & Xie, Min & Zhang, Shiping & Huang, Ying & Liu, Mingbo & Wang, Qiong, 2023. "Stochastic optimal scheduling of electricity–hydrogen enriched compressed natural gas urban integrated energy system," Renewable Energy, Elsevier, vol. 211(C), pages 1024-1044.
    3. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    4. Wang, Qi & Miao, Cairan & Tang, Yi, 2022. "Power shortage support strategies considering unified gas-thermal inertia in an integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    5. Hessam Golmohamadi & Saeed Golestan & Rakesh Sinha & Birgitte Bak-Jensen, 2024. "Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector," Energies, MDPI, vol. 17(18), pages 1-22, September.
    6. Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).
    7. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    8. Gong, Junhua & Shi, Guoyun & Wang, Shaobo & Wang, Peng & Chen, Bin & Chen, Yujie & Wang, Bohong & Yu, Bo & Jiang, Weixin & Li, Zongze, 2024. "Efficient super-resolution of pipeline transient process modeling using the Fourier Neural Operator," Energy, Elsevier, vol. 302(C).
    9. Wang, Sheng & Hui, Hongxun & Ding, Yi & Song, Yonghua, 2024. "Long-term reliability evaluation of integrated electricity and gas systems considering distributed hydrogen injections," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Bermúdez, Alfredo & Shabani, Mohsen, 2022. "Numerical simulation of gas composition tracking in a gas transportation network," Energy, Elsevier, vol. 247(C).
    3. Dancker, Jonte & Wolter, Martin, 2022. "A coupled transient gas flow calculation with a simultaneous calorific-value-gradient improved hydrogen tracking," Applied Energy, Elsevier, vol. 316(C).
    4. Danieli, Piero & Lazzaretto, Andrea & Al-Zaili, Jafar & Sayma, Abdulnaser & Masi, Massimo & Carraro, Gianluca, 2022. "The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system," Applied Energy, Elsevier, vol. 313(C).
    5. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    6. de Vries, Harmen & Mokhov, Anatoli V. & Levinsky, Howard B., 2017. "The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances," Applied Energy, Elsevier, vol. 208(C), pages 1007-1019.
    7. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    8. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    9. Fan, Di & Gong, Jing & Zhang, Shengnan & Shi, Guoyun & Kang, Qi & Xiao, Yaqi & Wu, Changchun, 2021. "A transient composition tracking method for natural gas pipe networks," Energy, Elsevier, vol. 215(PA).
    10. de Vries, Harmen & Levinsky, Howard B., 2020. "Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development," Applied Energy, Elsevier, vol. 259(C).
    11. Cavana, Marco & Mazza, Andrea & Chicco, Gianfranco & Leone, Pierluigi, 2021. "Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation," Applied Energy, Elsevier, vol. 290(C).
    12. Wang, Sheng & Hui, Hongxun & Ding, Yi & Song, Yonghua, 2024. "Long-term reliability evaluation of integrated electricity and gas systems considering distributed hydrogen injections," Applied Energy, Elsevier, vol. 356(C).
    13. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Devinder Mahajan & Kun Tan & T. Venkatesh & Pradheep Kileti & Clive R. Clayton, 2022. "Hydrogen Blending in Gas Pipeline Networks—A Review," Energies, MDPI, vol. 15(10), pages 1-32, May.
    15. Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir & Pishbin, Seyyed Iman & Pourramezan, Mahdi, 2019. "Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions," Energy, Elsevier, vol. 167(C), pages 235-245.
    16. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    17. Gu, Chenghong & Tang, Can & Xiang, Yue & Xie, Da, 2019. "Power-to-gas management using robust optimisation in integrated energy systems," Applied Energy, Elsevier, vol. 236(C), pages 681-689.
    18. Cinti, G. & Bidini, G. & Hemmes, K., 2019. "Comparison of the solid oxide fuel cell system for micro CHP using natural gas with a system using a mixture of natural gas and hydrogen," Applied Energy, Elsevier, vol. 238(C), pages 69-77.
    19. Enrico Vaccariello & Riccardo Trinchero & Igor S. Stievano & Pierluigi Leone, 2021. "A Statistical Assessment of Blending Hydrogen into Gas Networks," Energies, MDPI, vol. 14(16), pages 1-17, August.
    20. Quarton, Christopher J. & Samsatli, Sheila, 2020. "Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.