IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4837-d610667.html
   My bibliography  Save this article

Demand-Side Management for Improvement of the Power Quality in Smart Homes Using Non-Intrusive Identification of Appliance Usage Patterns with the True Power Factor

Author

Listed:
  • Hari Prasad Devarapalli

    (Corporate Industry Forums and Standards Cell, A Unit of Corporate RnI, Tata Consultancy Services, Hyderabad T.S 500019, India
    Department of Electrical Engineering, National Institute of Technology Warangal, Warangal T.S 506004, India)

  • Venkata Samba Sesha Siva Sarma Dhanikonda

    (Department of Electrical Engineering, National Institute of Technology Warangal, Warangal T.S 506004, India)

  • Sitarama Brahmam Gunturi

    (Component Engineering Group, Tata Consultancy Services, Hyderabad T.S 500019, India)

Abstract

The proliferation of low-power consumer electronic appliances (LPCEAs) is on the rise in smart homes in order to save energy. On the flip side, the current harmonics induced due to these LPCEAs pollute low-voltage distribution systems’ (LVDSs’) supplies, leading to a poor power factor (PF). Further, the energy meters in an LVDS do not measure both the total harmonic distortion (THD) of the current and the PF, resulting in inaccurate billing for energy consumption. In addition, this impacts the useful lifetime of LPCEAs. A PF that takes the harmonic distortion into account is called the true power factor (TPF). It is imperative to measure it accurately. This article measures the TPF using a four-term minimal sidelobe cosine-windowed enhanced dual-spectrum line interpolated Fast Fourier Transform (FFT). The proposed method was used to measure the TPF with a National Instruments cRIO-9082 real-time (RT) system, and four different LPCEAs in a smart home were considered. The RT results exhibited that the TPF uniquely identified each usage pattern of the LPCEAs and could use them to improve the TPF by suggesting an alternative usage pattern to the consumer. A positive response behavior on the part of the consumer that is in their interest can improve the power quality in a demand-side management application.

Suggested Citation

  • Hari Prasad Devarapalli & Venkata Samba Sesha Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2021. "Demand-Side Management for Improvement of the Power Quality in Smart Homes Using Non-Intrusive Identification of Appliance Usage Patterns with the True Power Factor," Energies, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4837-:d:610667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    2. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hessam Golmohamadi & Saeed Golestan & Rakesh Sinha & Birgitte Bak-Jensen, 2024. "Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector," Energies, MDPI, vol. 17(18), pages 1-22, September.
    2. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    2. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    3. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Andrea Mariscotti, 2022. "Non-Intrusive Load Monitoring Applied to AC Railways," Energies, MDPI, vol. 15(11), pages 1-27, June.
    6. Sarra Houidi & Dominique Fourer & François Auger & Houda Ben Attia Sethom & Laurence Miègeville, 2021. "Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning," Energies, MDPI, vol. 14(9), pages 1-28, May.
    7. Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
    8. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
    9. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    10. Christos Athanasiadis & Dimitrios Doukas & Theofilos Papadopoulos & Antonios Chrysopoulos, 2021. "A Scalable Real-Time Non-Intrusive Load Monitoring System for the Estimation of Household Appliance Power Consumption," Energies, MDPI, vol. 14(3), pages 1-23, February.
    11. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    12. Yang, Chao & Liang, Gaoqi & Liu, Jinjie & Liu, Guolong & Yang, Hongming & Zhao, Junhua & Dong, Zhaoyang, 2023. "A non-intrusive carbon emission accounting method for industrial corporations from the perspective of modern power systems," Applied Energy, Elsevier, vol. 350(C).
    13. Douglas Paulo Bertrand Renaux & Fabiana Pottker & Hellen Cristina Ancelmo & André Eugenio Lazzaretti & Carlos Raiumundo Erig Lima & Robson Ribeiro Linhares & Elder Oroski & Lucas da Silva Nolasco & Lu, 2020. "A Dataset for Non-Intrusive Load Monitoring: Design and Implementation," Energies, MDPI, vol. 13(20), pages 1-35, October.
    14. Xie, Xiangmin & Chen, Daolian, 2022. "Data-driven dynamic harmonic model for modern household appliances," Applied Energy, Elsevier, vol. 312(C).
    15. Inoussa Laouali & Isaías Gomes & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili & Antonio Ruano, 2022. "Energy Disaggregation Using Multi-Objective Genetic Algorithm Designed Neural Networks," Energies, MDPI, vol. 15(23), pages 1-29, November.
    16. Xi He & Heng Dong & Wanli Yang & Jun Hong, 2022. "A Novel Denoising Auto-Encoder-Based Approach for Non-Intrusive Residential Load Monitoring," Energies, MDPI, vol. 15(6), pages 1-15, March.
    17. Georgios Yiasoumas & Lazar Berbakov & Valentina Janev & Alessandro Asmundo & Eneko Olabarrieta & Andrea Vinci & Giovanni Baglietto & George E. Georghiou, 2023. "Key Aspects and Challenges in the Implementation of Energy Communities," Energies, MDPI, vol. 16(12), pages 1-24, June.
    18. Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.
    19. Netzah Calamaro & Moshe Donko & Doron Shmilovitz, 2021. "A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements," Energies, MDPI, vol. 14(21), pages 1-37, November.
    20. Kimia Honari & Sara Rouhani & Nida E. Falak & Yuan Liu & Yunwei Li & Hao Liang & Scott Dick & James Miller, 2023. "Smart Contract Design in Distributed Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(12), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4837-:d:610667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.