IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4144-d1460049.html
   My bibliography  Save this article

IoT-Based Sustainable Energy Solutions for Small and Medium Enterprises (SMEs)

Author

Listed:
  • Reem Alshahrani

    (Department of Computer Science, College of Computers and IT, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Ali Rizwan

    (Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Madani Abdu Alomar

    (Department of Industrial Engineering, Faculty of Engineering—Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Georgios Fotis

    (Centre for Energy Technologies, Aarhus University, Birk Centerpark 15, Innovatorium, 7400 Herning, Denmark)

Abstract

SMEs are asked to incorporate sustainable energy solutions into their organizations’ processes to be environmentally friendly and operate more effectively. In this regard, IoT-based technologies seem to have the potential to monitor and optimize energy use. However, more extensive research is required to assess the efficacy of such solutions in the context of SMEs. Despite the growing interest in the Internet of Things (IoT) for renewable energy, there is a lack of information on how well these solutions work for small and medium-sized enterprises (SMEs). While much of the existing literature addresses the application of new technologies in SMEs, the social background underlying their transformation received relatively little attention in previous years. The present research adopts a quantitative approach, employing time series forecasting, specifically long short-term memory networks (LSTM). This paper uses IoT-based approaches to collect and preprocess an energy consumption dataset from various SMEs. The LSTM model is intended to forecast energy consumption in the future based on experience. In terms of analysis, the study adopts Python for data preprocessing, constructing, and assessing models. The main findings reveal a strong positive correlation (r = 0.85) between base energy consumption and overall energy usage, suggesting that optimizing base consumption is crucial for energy efficiency. In contrast, investment in RETs and staff training demonstrate weak correlations (r = 0.25 and r = 0.30, respectively) with energy consumption, indicating that these factors alone are insufficient for significant energy savings. The long short-term memory model used in the study accurately predicted future energy consumption trends with a mean absolute error of 5%. However, it struggled with high-frequency variations, showing up to 15% of mistakes. This research contributes to the literature in line with IoT-based sustainable energy solutions in SMEs, which has not been widely addressed. The findings highlight the critical role of integrating renewable energy technologies (RETs) and fostering a culture of energy efficiency, offering actionable insights for policymakers and business owners. With the application of Python in data analysis and model creation, this research shows a real-world approach to handling issues in sustainable energy management for SMEs.

Suggested Citation

  • Reem Alshahrani & Ali Rizwan & Madani Abdu Alomar & Georgios Fotis, 2024. "IoT-Based Sustainable Energy Solutions for Small and Medium Enterprises (SMEs)," Energies, MDPI, vol. 17(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4144-:d:1460049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Ying & Wu, Yanpeng & Guerrero, Josep M. & Vasquez, Juan C., 2021. "A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    3. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    4. Dongli Tan & Yao Wu & Zhiqing Zhang & Yue Jiao & Lingchao Zeng & Yujun Meng, 2023. "Assessing the Life Cycle Sustainability of Solar Energy Production Systems: A Toolkit Review in the Context of Ensuring Environmental Performance Improvements," Sustainability, MDPI, vol. 15(15), pages 1-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    2. Khaled Taouil & Rahma Aloulou & Salma Bradai & Amal Gassara & Mohamed Wajdi Kharrat & Badii Louati & Michel Giordani, 2024. "P2P Energy Exchange Architecture for Swarm Electrification-Driven PV Communities," Energies, MDPI, vol. 17(15), pages 1-29, July.
    3. Andrew R. Smith & Mehrdad Ghamari & Sasireka Velusamy & Senthilarasu Sundaram, 2024. "Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics," Energies, MDPI, vol. 17(24), pages 1-39, December.
    4. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).
    5. Farheen Bano & Ali Rizwan & Suhail H. Serbaya & Faraz Hasan & Christos-Spyridon Karavas & Georgios Fotis, 2024. "Integrating Microgrids into Engineering Education: Modeling and Analysis for Voltage Stability in Modern Power Systems," Energies, MDPI, vol. 17(19), pages 1-29, September.
    6. Ancuța-Mihaela Aciu & Sorin Enache & Maria-Cristina Nițu, 2024. "A Reviewed Turn at of Methods for Determining the Type of Fault in Power Transformers Based on Dissolved Gas Analysis," Energies, MDPI, vol. 17(10), pages 1-26, May.
    7. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.
    8. Abubaker, Shawbo Abdulsamad & Pakhuruddin, Mohd Zamir, 2024. "Progress and development of organic photovoltaic cells for indoor applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    9. Abdollahzadeh, Gholamhossein & Sharifzadeh, Mohammad Sharif & Sklenička, Petr & Azadi, Hossein, 2023. "Adaptive capacity of farming systems to climate change in Iran: Application of composite index approach," Agricultural Systems, Elsevier, vol. 204(C).
    10. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    11. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    12. Dongdong Zhang & Jun Tian & Hui-Hwang Goh & Hui Liu & Xiang Li & Hongyu Zhu & Xinzhang Wu, 2022. "The Key Technology of Smart Energy System and Its Disciplinary Teaching Reform Measures," Sustainability, MDPI, vol. 14(21), pages 1-29, October.
    13. Xu, Xuesong & Xu, Kai & Zeng, Ziyang & Tang, Jiale & He, Yuanxing & Shi, Guangze & Zhang, Tao, 2024. "Collaborative optimization of multi-energy multi-microgrid system: A hierarchical trust-region multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 375(C).
    14. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    15. Sulaiman A. Almohaimeed, 2023. "Techno-Environmental Analysis of a Microgrid Energy System in a University Office Complex," Sustainability, MDPI, vol. 15(16), pages 1-27, August.
    16. Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.
    17. Shouning Huang, 2024. "Application of Internet of Things Technology in Computer Network Security and Remote-Control Analysis," International Journal of Web Services Research (IJWSR), IGI Global, vol. 21(1), pages 1-18, January.
    18. Tatyana Semenova & Juan Yair Martínez Santoyo, 2024. "Increasing the Sustainability of the Strategic Development of Oil Producing Companies in Mexico," Resources, MDPI, vol. 13(8), pages 1-37, August.
    19. Sulman Shahzad & Elżbieta Jasińska, 2024. "Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    20. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4144-:d:1460049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.