IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3680-d1443206.html
   My bibliography  Save this article

P2P Energy Exchange Architecture for Swarm Electrification-Driven PV Communities

Author

Listed:
  • Khaled Taouil

    (Laboratory of Signals, Systems, Artificial Intelligence and Networks (SM@RTS), Sfax 3021, Tunisia
    Digital Research Center of Sfax, Sfax 3021, Tunisia
    National School of Electronics and Telecommunications of Sfax, University of Sfax, Sfax 3018, Tunisia)

  • Rahma Aloulou

    (Digital Research Center of Sfax, Sfax 3021, Tunisia
    National School of Electronics and Telecommunications of Sfax, University of Sfax, Sfax 3018, Tunisia
    Laboratory of Electronics and Information Technology (LETI), University of Sfax, Sfax 3038, Tunisia)

  • Salma Bradai

    (Orange Innovation Center, Tunis 1053, Tunisia)

  • Amal Gassara

    (Digital Research Center of Sfax, Sfax 3021, Tunisia
    Higher Institute of Computer Science Mahdia (ISIMa), University of Monastir, Mahdia 5111, Tunisia
    ReDCAD Laboratory, University of Sfax, Sfax 3038, Tunisia)

  • Mohamed Wajdi Kharrat

    (Laboratory of Signals, Systems, Artificial Intelligence and Networks (SM@RTS), Sfax 3021, Tunisia
    Digital Research Center of Sfax, Sfax 3021, Tunisia
    National School of Electronics and Telecommunications of Sfax, University of Sfax, Sfax 3018, Tunisia)

  • Badii Louati

    (Orange Innovation Center, Tunis 1053, Tunisia)

  • Michel Giordani

    (Orange Innovation, 38240 Meylan, France)

Abstract

Swarm electrification-driven communities face significant challenges, including implementing advanced distributed control in areas with limited ICT access and establishing trust among villagers hesitant to grant access to their assets. This paper proposes a distributed DC microgrid architecture for P2P energy exchange in these communities, ensuring stability and an effective exchange operation. By implementing a Blockchain marketplace specifically designed to suit the rural context, the proposed architecture ensures tracing of exchange transactions to fairly settle participants. Validation experiments demonstrate its efficacy in achieving peak shaving. It provides 11% of the requester’s total demand from the community even while maintaining the constraint of reducing discharge–charge cycles to one per day, thereby preserving battery life. Additionally, the solution reduces prosumer production losses by 16% of the total PV production.

Suggested Citation

  • Khaled Taouil & Rahma Aloulou & Salma Bradai & Amal Gassara & Mohamed Wajdi Kharrat & Badii Louati & Michel Giordani, 2024. "P2P Energy Exchange Architecture for Swarm Electrification-Driven PV Communities," Energies, MDPI, vol. 17(15), pages 1-29, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3680-:d:1443206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    3. Sheridan, Steve & Sunderland, Keith & Courtney, Jane, 2023. "Swarm electrification: A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    2. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Sophie Adams & Donal Brown & Juan Pablo Cárdenas Álvarez & Ruzanna Chitchyan & Michael J. Fell & Ulf J. J. Hahnel & Kristina Hojckova & Charlotte Johnson & Lurian Klein & Mehdi Montakhabi & Kelvin Say, 2021. "Social and Economic Value in Emerging Decentralized Energy Business Models: A Critical Review," Energies, MDPI, vol. 14(23), pages 1-29, November.
    4. Sulman Shahzad & Elżbieta Jasińska, 2024. "Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    5. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    7. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    8. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    9. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    10. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    11. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    12. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    13. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.
    14. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    15. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    16. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    17. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    18. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    19. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    20. Hammad Alnuman & Kuo-Hsien Hsia & Mohammadreza Askari Sepestanaki & Emad M. Ahmed & Saleh Mobayen & Ammar Armghan, 2023. "Design of Continuous Finite-Time Controller Based on Adaptive Tuning Approach for Disturbed Boost Converters," Mathematics, MDPI, vol. 11(7), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3680-:d:1443206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.