IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics136403212400707x.html
   My bibliography  Save this article

Residential energy considering renewable portfolio standards and tradable green certificates

Author

Listed:
  • Lin, Chun-Cheng
  • Shen, Hong-Yu
  • Peng, Yi-Chun
  • Liu, Wan-Yu

Abstract

Optimizing energy management for distributed renewable energy sources (DRESs) with battery energy storage systems, energy trading, and emission trading schemes (ETSs) within the Internet of Energy (IoE) has garnered considerable attention. ETSs have been extended to include sectors with dispersed emissions, notably targeting households, aligning with the growing adoption of DRESs for household electricity. However, previous studies focused on how renewable portfolio standard (RPS) that mandates energy suppliers to include a percentage of renewable energy into their energy portfolios influence industrial and large-scale energy systems, neglecting the potential of implementing RPS at the household level. In addition, previous studies analyzed energy markets of traded green certificates (TGCs), certified through their separation from renewable energy generation, but rarely investigated their potential within households. Consequently, this study introduces house-based RPS (HRPS) and the unbundling of TGCs into a dynamic energy management optimization problem for a smart house with DRESs, a home energy storage system (HESS), and an electric vehicle, where HRPS mandates daily consumption of green energy, allowing for energy and TGC trading through their respective trading platforms. A mathematical programming model is formulated for determining HESS charging/discharging decisions, energy trading, and TGC trading under HRPS, while minimizing costs and penalties for HRPS non-compliance. Since TGC unbundling makes this model much complex, a hybrid simplified harmony search (SHS) and double-adaptive general variable neighborhood search (DAGVNS) algorithm is proposed. Simulation results demonstrate that the introduction of RPS and TGC trading can effectively reduce the smart house's carbon emissions by approximately 19.4 % weekly.

Suggested Citation

  • Lin, Chun-Cheng & Shen, Hong-Yu & Peng, Yi-Chun & Liu, Wan-Yu, 2025. "Residential energy considering renewable portfolio standards and tradable green certificates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s136403212400707x
    DOI: 10.1016/j.rser.2024.114981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212400707X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s136403212400707x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.