IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics030626192400237x.html
   My bibliography  Save this article

Applying graph theory to find key leverage points in the transition toward urban renewable energy systems

Author

Listed:
  • Rozhkov, Anton

Abstract

This article employs graph theory to quantitatively analyze the causal loop diagrams, focusing on the transition to decentralized renewable energy markets and identifying key variables acting as initiators and reinforcers of this transition. The study utilizes a combination of qualitative diagramming (CLD), SWOT analysis, and graph theory, offering a robust methodology applicable not only to energy planning but across diverse domains. Key findings highlight the significance of profit-driven and investment-based approaches, in tandem with political will and strategic planning, in integrating decentralized renewable energy systems. Some variables, consistently present across the top ten graph-based measures, serve as critical leverage points, including “Need for decentralized solutions” (in 6 out of 10 measures), “Profit” (5 out of 10), “Technological progress” (5 out of 10), “Consumers interest in decentralized solutions” (5 out of 10), and “Climate change” (5 out of 10). Moreover, the willingness of customers to engage in the energy market and urban planning's role in energy consumption patterns was found pivotal. This presented approach offers valuable insights and encourages a holistic reevaluation of urban systems, providing stakeholders with a comprehensive tool to inform decision-making practices. The research underscores the importance of well-established factors and unveils specific nuances in the transition to decentralized renewable energy.

Suggested Citation

  • Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s030626192400237x
    DOI: 10.1016/j.apenergy.2024.122854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400237X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stacchini, Annalisa & Guizzardi, Andrea & Mariotti, Alessia, 2022. "Smoothing down arbitrariness in planning: From SWOT to participatory decision making," Land Use Policy, Elsevier, vol. 119(C).
    2. Ma, Qiang & Murshed, Muntasir & Khan, Zeeshan, 2021. "The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China," Energy Policy, Elsevier, vol. 155(C).
    3. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    4. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    5. David Harvey, 2007. "Neoliberalism as Creative Destruction," The ANNALS of the American Academy of Political and Social Science, , vol. 610(1), pages 21-44, March.
    6. Larsson, Simon & Fantazzini, Dean & Davidsson, Simon & Kullander, Sven & Höök, Mikael, 2014. "Reviewing electricity production cost assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 170-183.
    7. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    8. John Renne, 2023. "Urban interventions: formulating a strategy for walkable and transit-oriented development," Chapters, in: João de Abreu e Silva & Kristina M. Currans & Veronique Van Acker & Robert J. Schneider (ed.), Handbook on Transport and Land Use, chapter 14, pages 250-262, Edward Elgar Publishing.
    9. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium: An instrument-based estimation of supply and demand for imbalance energy," Energy Economics, Elsevier, vol. 102(C).
    10. András Szeberényi & Tomasz Rokicki & Árpád Papp-Váry, 2022. "Examining the Relationship between Renewable Energy and Environmental Awareness," Energies, MDPI, vol. 15(19), pages 1-25, September.
    11. Wang, Richard & Hsu, Shu-Chien & Zheng, Saina & Chen, Jieh-Haur & Li, Xuran Ivan, 2020. "Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy," Applied Energy, Elsevier, vol. 274(C).
    12. Young-Eun Woo & Gi-Hyoug Cho, 2018. "Impact of the Surrounding Built Environment on Energy Consumption in Mixed-Use Building," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    13. Gao, Hongjun & Xu, Song & Liu, Youbo & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Decentralized optimal operation model for cooperative microgrids considering renewable energy uncertainties," Applied Energy, Elsevier, vol. 262(C).
    14. Juliane Große & Christian Fertner & Niels Boje Groth, 2016. "Urban Structure, Energy and Planning: Findings from Three Cities in Sweden, Finland and Estonia," Urban Planning, Cogitatio Press, vol. 1(1), pages 24-40.
    15. Yu, Chenyang & Moslehpour, Massoud & Tran, Trung Kien & Trung, Lam Minh & Ou, Jenho Peter & Tien, Nguyen Hoang, 2023. "Impact of non-renewable energy and natural resources on economic recovery: Empirical evidence from selected developing economies," Resources Policy, Elsevier, vol. 80(C).
    16. Orehounig, Kristina & Evins, Ralph & Dorer, Viktor, 2015. "Integration of decentralized energy systems in neighbourhoods using the energy hub approach," Applied Energy, Elsevier, vol. 154(C), pages 277-289.
    17. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    18. Stuart Oldham & Ben Fulcher & Linden Parkes & Aurina Arnatkevic̆iūtė & Chao Suo & Alex Fornito, 2019. "Consistency and differences between centrality measures across distinct classes of networks," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    19. Ali Movahedi & Sybil Derrible, 2021. "Interrelationships between electricity, gas, and water consumption in large‐scale buildings," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 932-947, August.
    20. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    21. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    22. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    23. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    24. William Hongsong Wang & Vicente Moreno-Casas & Jesús Huerta de Soto, 2021. "A Free-Market Environmentalist Transition toward Renewable Energy: The Cases of Germany, Denmark, and the United Kingdom," Energies, MDPI, vol. 14(15), pages 1-27, July.
    25. Hoicka, Christina E. & Lowitzsch, Jens & Brisbois, Marie Claire & Kumar, Ankit & Ramirez Camargo, Luis, 2021. "Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities," Energy Policy, Elsevier, vol. 156(C).
    26. Sovacool, Benjamin K., 2009. "Rejecting renewables: The socio-technical impediments to renewable electricity in the United States," Energy Policy, Elsevier, vol. 37(11), pages 4500-4513, November.
    27. Ajaz, Warda & Bernell, David, 2021. "Microgrids and the transition toward decentralized energy systems in the United States: A Multi-Level Perspective," Energy Policy, Elsevier, vol. 149(C).
    28. Zhao, Ge & Zhou, P. & Wen, Wen, 2021. "Feed-in tariffs, knowledge stocks and renewable energy technology innovation: The role of local government intervention," Energy Policy, Elsevier, vol. 156(C).
    29. Johan Graafland & Lans Bovenberg, 2020. "Government regulation, business leaders’ motivations and environmental performance of SMEs," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(8), pages 1335-1355, July.
    30. Abba, Z.Y.I. & Balta-Ozkan, N. & Hart, P., 2022. "A holistic risk management framework for renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    31. C. E. Richards & R. C. Lupton & J. M. Allwood, 2021. "Re-framing the threat of global warming: an empirical causal loop diagram of climate change, food insecurity and societal collapse," Climatic Change, Springer, vol. 164(3), pages 1-19, February.
    32. Kozlova, M. & Overland, I., 2022. "Combining capacity mechanisms and renewable energy support: A review of the international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    33. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    34. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.
    35. Kaza, Nikhil, 2020. "Urban form and transportation energy consumption," Energy Policy, Elsevier, vol. 136(C).
    36. Lund, P.D., 2009. "Effects of energy policies on industry expansion in renewable energy," Renewable Energy, Elsevier, vol. 34(1), pages 53-64.
    37. Kumar, K. Prakash & Saravanan, B., 2017. "Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 348-358.
    38. Bjarnhedinn Gudlaugsson & Dana Abi Ghanem & Huda Dawood & Gobind Pillai & Michael Short, 2022. "A Qualitative Based Causal-Loop Diagram for Understanding Policy Design Challenges for a Sustainable Transition Pathway: The Case of Tees Valley Region, UK," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    39. Niu, Dong-xiao & Song, Zong-yun & Xiao, Xin-li, 2017. "Electric power substitution for coal in China: Status quo and SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 610-622.
    40. Almulhim, Abdulaziz I., 2022. "Understanding public awareness and attitudes toward renewable energy resources in Saudi Arabia," Renewable Energy, Elsevier, vol. 192(C), pages 572-582.
    41. Dana R. Fisher & Sohana Nasrin, 2021. "Climate activism and its effects," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    42. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    43. Mendicino, Luca & Menniti, Daniele & Pinnarelli, Anna & Sorrentino, Nicola, 2019. "Corporate power purchase agreement: Formulation of the related levelized cost of energy and its application to a real life case study," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    44. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    45. Ricardo J. Caballero & Eduardo M. R. A. Engel & John C. Haltiwanger, 1995. "Plant-Level Adjustment and Aggregate Investment Dynamics," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 26(2), pages 1-54.
    46. Javier Sandoval & Manuel Castañón-Puga & Carelia Gaxiola-Pacheco & Eugenio Dante Suarez, 2017. "Identifying Clusters of Complex Urban–Rural Issues as Part of Policy Making Process Using a Network Analysis Approach: A Case Study in Bahía de Los Ángeles, Mexico," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    47. Niesten, Eva & Jolink, Albert, 2012. "Regulating opportunism in the electricity industry and consumer interests," Utilities Policy, Elsevier, vol. 20(1), pages 38-45.
    48. Valkering, Pieter & Moglianesi, Andrea & Godon, Louis & Duerinck, Jan & Huber, Dominik & Costa, Daniele, 2023. "Representing decentralized generation and local energy use flexibility in an energy system optimization model," Applied Energy, Elsevier, vol. 348(C).
    49. Markovska, N. & Taseska, V. & Pop-Jordanov, J., 2009. "SWOT analyses of the national energy sector for sustainable energy development," Energy, Elsevier, vol. 34(6), pages 752-756.
    50. Peter Alstone & Dimitry Gershenson & Daniel M. Kammen, 2015. "Decentralized energy systems for clean electricity access," Nature Climate Change, Nature, vol. 5(4), pages 305-314, April.
    51. Moira Zellner & Dean Massey & Anton Rozhkov & John T. Murphy, 2023. "Exploring the Barriers to and Potential for Sustainable Transitions in Urban–Rural Systems through Participatory Causal Loop Diagramming of the Food–Energy–Water Nexus," Land, MDPI, vol. 12(3), pages 1-27, February.
    52. Benjamin K. Sovacool & Peter Newell & Sanya Carley & Jessica Fanzo, 2022. "Equity, technological innovation and sustainable behaviour in a low-carbon future," Nature Human Behaviour, Nature, vol. 6(3), pages 326-337, March.
    53. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    54. Terrados, J. & Almonacid, G. & Hontoria, L., 2007. "Regional energy planning through SWOT analysis and strategic planning tools.: Impact on renewables development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1275-1287, August.
    55. Rode, David C. & Fischbeck, Paul S. & Páez, Antonio R., 2017. "The retirement cliff: Power plant lives and their policy implications," Energy Policy, Elsevier, vol. 106(C), pages 222-232.
    56. Arbolino, Roberta & Boffardi, Raffaele & Lanuzza, Francesco & Ioppolo, Giuseppe, 2018. "Monitoring and evaluation of regional industrial sustainability: Evidence from Italian regions," Land Use Policy, Elsevier, vol. 75(C), pages 420-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Kwaku Nimako & Silvia Carpitella & Andrea Menapace, 2024. "Novel Multi-Criteria Decision Analysis Based on Performance Indicators for Urban Energy System Planning," Energies, MDPI, vol. 17(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    2. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    3. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    6. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    7. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    8. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    9. Neska, Ewa & Kowalska-Pyzalska, Anna, 2022. "Conceptual design of energy market topologies for communities and their practical applications in EU: A comparison of three case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    11. Konstantinos Kokkinos & Vayos Karayannis, 2020. "Supportiveness of Low-Carbon Energy Technology Policy Using Fuzzy Multicriteria Decision-Making Methodologies," Mathematics, MDPI, vol. 8(7), pages 1-26, July.
    12. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    13. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    14. Wu, Qiyan & Zhang, Xiaoling & Sun, Jingwei & Ma, Zhifei & Zhou, Chen, 2016. "Locked post-fossil consumption of urban decentralized solar photovoltaic energy: A case study of an on-grid photovoltaic power supply community in Nanjing, China," Applied Energy, Elsevier, vol. 172(C), pages 1-11.
    15. Sebastian Goers & Fiona Rumohr & Sebastian Fendt & Louis Gosselin & Gilberto M. Jannuzzi & Rodolfo D. M. Gomes & Stella M. S. Sousa & Reshmi Wolvers, 2020. "The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape," Sustainability, MDPI, vol. 13(1), pages 1-30, December.
    16. Andrade, Eurídice M. & Paulo Cosenza, José & Pinguelli Rosa, Luiz & Lacerda, Gleide, 2012. "The vulnerability of hydroelectric generation in the Northeast of Brazil: The environmental and business risks for CHESF," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5760-5769.
    17. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    18. Zwickl-Bernhard, Sebastian & Auer, Hans, 2021. "Open-source modeling of a low-carbon urban neighborhood with high shares of local renewable generation," Applied Energy, Elsevier, vol. 282(PA).
    19. Friebe, Christian A. & von Flotow, Paschen & Täube, Florian A., 2014. "Exploring technology diffusion in emerging markets – the role of public policy for wind energy," Energy Policy, Elsevier, vol. 70(C), pages 217-226.
    20. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s030626192400237x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.