IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs030626192402004x.html
   My bibliography  Save this article

Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals

Author

Listed:
  • Sifat, Md. Mhamud Hussen
  • Choudhury, Safwat Mukarrama
  • Das, Sajal K.
  • Pota, Hemanshu
  • Yang, Fuwen

Abstract

Managing the current high penetration of renewable energy sources globally poses a significant challenge due to the distributed and diverse nature of generation components. To maximize real-time power generation, these resources need to perform optimally. Digital twin technology offers a comprehensive framework for managerial support by replicating grid features in a digital environment. This research creates a digital twin of the microgrid to optimize power generation, focusing on computational efficiency and self-healing control. The framework is tested in a laboratory microgrid, with modeling performed using a polynomial regression algorithm. Optimization is achieved through a gradient descent algorithm, and the self-healing model is implemented using a logistic regression algorithm. Real-time data extracted from the microgrid drives this process. The results can be utilized for predictive analysis before deploying a microgrid or to optimize generation in existing systems using the digital twin model. Even though the research focuses on a single microgrid unit, it introduces a framework proposal for extensively distributed microgrids integrating multiple renewable energy sources.

Suggested Citation

  • Sifat, Md. Mhamud Hussen & Choudhury, Safwat Mukarrama & Das, Sajal K. & Pota, Hemanshu & Yang, Fuwen, 2025. "Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s030626192402004x
    DOI: 10.1016/j.apenergy.2024.124621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192402004X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Changhyun Kim & Minh-Chau Dinh & Hae-Jin Sung & Kyong-Hwan Kim & Jeong-Ho Choi & Lukas Graber & In-Keun Yu & Minwon Park, 2022. "Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin," Energies, MDPI, vol. 15(17), pages 1-16, August.
    2. Darville, Joshua & Yavuz, Abdurrahman & Runsewe, Temitope & Celik, Nurcin, 2023. "Effective sampling for drift mitigation in machine learning using scenario selection: A microgrid case study," Applied Energy, Elsevier, vol. 341(C).
    3. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
    4. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan & Cui, Chuanshi, 2024. "Peer-to-peer energy sharing model considering multi-objective optimal allocation of shared energy storage in a multi-microgrid system," Energy, Elsevier, vol. 288(C).
    5. Nisitha Padmawansa & Kosala Gunawardane & Samaneh Madanian & Amanullah Maung Than Oo, 2023. "Battery Energy Storage Capacity Estimation for Microgrids Using Digital Twin Concept," Energies, MDPI, vol. 16(12), pages 1-18, June.
    6. Hao Jiang & Rudy Tjandra & Chew Beng Soh & Shuyu Cao & Donny Cheng Lock Soh & Kuan Tak Tan & King Jet Tseng & Sivaneasan Bala Krishnan, 2024. "Digital Twin of Microgrid for Predictive Power Control to Buildings," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    7. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    8. Hyang-A Park & Gilsung Byeon & Wanbin Son & Hyung-Chul Jo & Jongyul Kim & Sungshin Kim, 2020. "Digital Twin for Operation of Microgrid: Optimal Scheduling in Virtual Space of Digital Twin," Energies, MDPI, vol. 13(20), pages 1-15, October.
    9. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    10. Ferahtia, Seydali & Houari, Azeddine & Cioara, Tudor & Bouznit, Mohammed & Rezk, Hegazy & Djerioui, Ali, 2024. "Recent advances on energy management and control of direct current microgrid for smart cities and industry: A Survey," Applied Energy, Elsevier, vol. 368(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    2. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    3. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    4. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    5. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    6. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    7. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    8. Wang, Hui & Zheng, Junkang & Xiang, Jiawei, 2023. "Online bearing fault diagnosis using numerical simulation models and machine learning classifications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Rachid Darbali-Zamora & Jay Johnson & Adam Summers & C. Birk Jones & Clifford Hansen & Chad Showalter, 2021. "State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin," Energies, MDPI, vol. 14(3), pages 1-21, February.
    10. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    11. Eduardo Gómez-Luna & John E. Candelo-Becerra & Juan C. Vasquez, 2023. "A New Digital Twins-Based Overcurrent Protection Scheme for Distributed Energy Resources Integrated Distribution Networks," Energies, MDPI, vol. 16(14), pages 1-23, July.
    12. Vosughi, Amirkhosro & Tamimi, Ali & King, Alexandra Beatrice & Majumder, Subir & Srivastava, Anurag K., 2022. "Cyber–physical vulnerability and resiliency analysis for DER integration: A review, challenges and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Khaled Taouil & Rahma Aloulou & Salma Bradai & Amal Gassara & Mohamed Wajdi Kharrat & Badii Louati & Michel Giordani, 2024. "P2P Energy Exchange Architecture for Swarm Electrification-Driven PV Communities," Energies, MDPI, vol. 17(15), pages 1-29, July.
    14. Mohtavipour, Seyed Saeid, 2024. "Convex relaxation of two-stage network-constrained stochastic programming for CHP microgrid optimal scheduling," Energy, Elsevier, vol. 308(C).
    15. Cephas Samende & Zhong Fan & Jun Cao & Renzo Fabián & Gregory N. Baltas & Pedro Rodriguez, 2023. "Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning," Energies, MDPI, vol. 16(19), pages 1-20, September.
    16. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    17. Juan R. Lopez & Jose de Jesus Camacho & Pedro Ponce & Brian MacCleery & Arturo Molina, 2022. "A Real-Time Digital Twin and Neural Net Cluster-Based Framework for Faults Identification in Power Converters of Microgrids, Self Organized Map Neural Network," Energies, MDPI, vol. 15(19), pages 1-25, October.
    18. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    19. Hahnel, Ulf J.J. & Fell, Michael J., 2022. "Pricing decisions in peer-to-peer and prosumer-centred electricity markets: Experimental analysis in Germany and the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s030626192402004x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.