IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3861-d1450511.html
   My bibliography  Save this article

An Improved Cascaded Boost Converter with an Ultra-High Voltage Gain Suitable for Dielectric Quality Tests

Author

Listed:
  • Hossein Gholizadeh

    (School of Electrical and Computer Engineering, University of Tehran, Tehran 1417935840, Iran)

  • Reza Sharifi Shahrivar

    (Electrical Engineering Faculty, Islamic Azad University, Tehran 1477893855, Iran)

  • Saeed Amini

    (Electrical Engineering Faculty, Islamic Azad University, Tehran 1477893855, Iran)

  • Tohid Rahimi

    (Electrical Engineering Faculty, University of New Brunswick, Fredericton, NB E3B 5A3, Canada)

Abstract

Dielectric quality tests require a high AC voltage with a frequency range of 0.0001 Hz to 1000 Hz. However, providing a high AC voltage with such a frequency variety is challenging. Providing a high DC voltage and then applying such a voltage to an inverter to adjust the frequency can be an acceptable solution for such a challenge. Notably, a high DC voltage is required for DC tests. This study proposes an improved form of the cascaded boost converter, whose merits are as follows: (i) the high voltage gain providing low duty cycles is possible; (ii) the input current is continuous, which decreases the current ripple of the input filter capacitor; (iii) the current stress of the semiconductors is less than the input current, and most of them have a large difference with it; (iv) the voltage stress of the semiconductors is less than the output voltage with a large difference; (v) only one switch with a simple drive circuit is used; (vi) the common ground of the load and input source decreases the EMI noise; (vii) besides the high voltage gain, the voltage density of the converter based on the number of inductors, capacitors, switches, diodes, and whole components is greater than that of the recently proposed converters; (viii) only two stacked connections of the proposed topology can provide a 2.6 kV voltage for a higher DC voltage test of dielectrics. The functional details of the converter are extracted in ideal and continuous conduction (CCM) modes. Moreover, the converter’s voltage gain and density are compared with the recently proposed converters to show the superiority of the proposed converter. Finally, the experimental results are presented to validate the theoretical relations in a 140 W output power.

Suggested Citation

  • Hossein Gholizadeh & Reza Sharifi Shahrivar & Saeed Amini & Tohid Rahimi, 2024. "An Improved Cascaded Boost Converter with an Ultra-High Voltage Gain Suitable for Dielectric Quality Tests," Energies, MDPI, vol. 17(15), pages 1-28, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3861-:d:1450511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
    2. Maryam Shaabani & Amin Mirzaei & Mahdi Rezvanyvardom & Farshad Khosravi & Saman A. Gorji, 2023. "A Hybrid Switched-Inductor/Switched-Capacitor DC-DC Converter with High Voltage Gain Using a Single Switch for Photovoltaic Application," Energies, MDPI, vol. 16(14), pages 1-20, July.
    3. Hyung-Wook Kang & Hyun-Seong Lee & Jae-Ho Rhee & Kun-A Lee, 2023. "DC Voltage Source Based on a Battery of Supercapacitors with a Regulator in the Form of an Isolated Boost LCC Resonant Converter," Energies, MDPI, vol. 16(18), pages 1-15, September.
    4. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Ping-Sheng Huang, 2023. "Analysis and Design of a New High Voltage Gain Interleaved DC–DC Converter with Three-Winding Coupled Inductors for Renewable Energy Systems," Energies, MDPI, vol. 16(9), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma & Giovanni Pau, 2024. "A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 17(16), pages 1-35, August.
    2. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    3. Esraa M. Abd Elsadek & Hossam Kotb & Ayman Samy Abdel-Khalik & Yasser Aboelmagd & Aly. H. Abdelbaky Elbatran, 2024. "Experimental and Techno-Economic Analysis of Solar PV System for Sustainable Building and Greenhouse Gas Emission Mitigation in Harsh Climate: A Case Study of Aswan Educational Building," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
    4. Tithy Dev & Morteza Haghiri & Gabriela Sabau, 2024. "Impacts of Urbanization on Energy Consumption in the South Asian Association for Regional Cooperation Zone," Sustainability, MDPI, vol. 16(18), pages 1-15, September.
    5. Javed Khan Bhutto, 2024. "Augmented Two-Stage Hierarchical Controller for Distributed Power Generation System Powered by Renewable Energy: Development and Performance Analysis," Sustainability, MDPI, vol. 16(14), pages 1-21, July.
    6. Mustafa Muthanna Najm Shahrabani & Rasa Apanaviciene, 2024. "An AI-Based Evaluation Framework for Smart Building Integration into Smart City," Sustainability, MDPI, vol. 16(18), pages 1-35, September.
    7. Yuan Liu & Yamin Ding & Pei Jiang & Xugang Jin & Xinlin Wu & Zhanji Zheng, 2024. "Joint Optimal Design of Electric Bus Service and Charging Facilities," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
    8. Martin Bolfek & Tomislav Capuder, 2024. "Voltage-Triggered Flexibility Provision in a Distribution Network with Limited Observability," Energies, MDPI, vol. 17(16), pages 1-19, August.
    9. Saeed Al-Ali & Abdul Ghani Olabi & Montaser Mahmoud, 2024. "Multi-Criteria Decision Making for Selecting the Location of a Solar Photovoltaic Park: A Case Study in UAE," Energies, MDPI, vol. 17(17), pages 1-14, August.
    10. Grzegorz Nawalany & Miroslav Zitnak & Małgorzata Michalik & Jana Lendelova & Paweł Sokołowski, 2024. "Impact of the Location and Energy Carriers Used on Greenhouse Gas Emissions from a Building," Energies, MDPI, vol. 17(19), pages 1-26, September.
    11. Heidi S. Nygård & Stig Ødegaard Ottesen & Olav Henrik Skonnord, 2024. "Profitability Analyses for Residential Battery Investments: A Norwegian Case Study," Energies, MDPI, vol. 17(16), pages 1-18, August.
    12. Hadi Shenabi & Rashed Sahraeian, 2024. "Decision-Making Approach to Design a Sustainable Photovoltaic Closed-Loop Supply Chain Considering Market Share for Electric Vehicle Energy," Sustainability, MDPI, vol. 16(13), pages 1-28, July.
    13. Anujin Bayasgalan & Yoo Shin Park & Seak Bai Koh & Sung-Yong Son, 2024. "Comprehensive Review of Building Energy Management Models: Grid-Interactive Efficient Building Perspective," Energies, MDPI, vol. 17(19), pages 1-25, September.
    14. Samuel Borroy Vicente & Gregorio Fernández & Noemi Galan & Andrés Llombart Estopiñán & Matteo Salani & Marco Derboni & Vincenzo Giuffrida & Luis Hernández-Callejo, 2024. "Assessment of the Technical Impacts of Electric Vehicle Penetration in Distribution Networks: A Focus on System Management Strategies Integrating Sustainable Local Energy Communities," Sustainability, MDPI, vol. 16(15), pages 1-21, July.
    15. Yiming Xu & Ali Alderete Peralta & Nazmiye Balta-Ozkan, 2024. "Vehicle-to-Vehicle Energy Trading Framework: A Systematic Literature Review," Sustainability, MDPI, vol. 16(12), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3861-:d:1450511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.