IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5315-d1420036.html
   My bibliography  Save this article

Experimental and Techno-Economic Analysis of Solar PV System for Sustainable Building and Greenhouse Gas Emission Mitigation in Harsh Climate: A Case Study of Aswan Educational Building

Author

Listed:
  • Esraa M. Abd Elsadek

    (College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Aswan 81511, Egypt)

  • Hossam Kotb

    (Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Ayman Samy Abdel-Khalik

    (Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Yasser Aboelmagd

    (College of Engineering, University of Business and Technology, Jeddah 23435, Saudi Arabia)

  • Aly. H. Abdelbaky Elbatran

    (College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Aswan 81511, Egypt)

Abstract

Climate change is a global issue that requires collective action to address. One of the most pressing concerns is reducing emissions resulting from combustion processes. The use of renewable energy sources and green energy has become a trend worldwide. Solar energy is one of the most promising sources due to its abundance and simplicity of implementation. The city of Aswan, located in the South of Egypt, has a high solar radiation that makes it ideal for utilizing solar power. The current study investigates the optimal design for a sustainable building electricity system at the Aswan Campus of the Arab Academy for Science, Technology & Maritime Transport (AASTMT) in Egypt. The campus has four electricity sources: a utility grid, PV panels, batteries, and a diesel generator, along with a weather station. Experimental investigations have been carried out in this research paper to study the performance characteristics of solar power. Moreover, HOMER pro software is used to model various configurations of the campus grid, including different photovoltaic (PV) panel types and tracking systems. The simulations are compared with real-world data collected from a weather station on campus. Additionally, CO 2 and NO 2 emissions are measured to assess the environmental impact of different scenarios. The total net cost over the life cycle is also calculated for different cases. The results demonstrate that the addition of a PV renewable system can reduce traditional grid usage by 38% and emissions by 50%. A decrease in the Levelized Cost of Energy (LOCE) from USD 0.0647 to USD 0.0535 is reported. Moreover, the difference in NCP cost between dual-axis tracking and fixed zero angle is USD 143,488. The dual degree tracker for PV panels can further enhance energy production by 30% more, compared with fixed panels, while reducing carbon dioxide emissions by more than 20%. The simulation results reveal that tracking systems provide greater energy generation, and that a cost–benefit analysis may prioritize fixed panels in some cases. The results from the HOMER software simulations closely match those of the experimental data, which is that the total presentation error does not exceed 8%, demonstrating the software’s effectiveness for optimizing renewable energy systems. This study demonstrates that a comprehensive analysis and optimization of a building’s energy sources can significantly reduce costs, lower emissions, and promote the use of renewable energy, particularly solar power.

Suggested Citation

  • Esraa M. Abd Elsadek & Hossam Kotb & Ayman Samy Abdel-Khalik & Yasser Aboelmagd & Aly. H. Abdelbaky Elbatran, 2024. "Experimental and Techno-Economic Analysis of Solar PV System for Sustainable Building and Greenhouse Gas Emission Mitigation in Harsh Climate: A Case Study of Aswan Educational Building," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5315-:d:1420036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
    2. Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
    3. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    4. Salameh, Tareq & Ghenai, Chaouki & Merabet, Adel & Alkasrawi, Malek, 2020. "Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Leihou & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Shitao, 2024. "A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules," Renewable Energy, Elsevier, vol. 221(C).
    2. Manoel Henriques de Sá Campos & Chigueru Tiba, 2021. "npTrack: A n-Position Single Axis Solar Tracker Model for Optimized Energy Collection," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma & Giovanni Pau, 2024. "A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 17(16), pages 1-35, August.
    4. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    5. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    6. Mohammed W. Baidas & Rola W. Hasaneya & Rashad M. Kamel & Sultan Sh. Alanzi, 2021. "Solar-Powered Cellular Base Stations in Kuwait: A Case Study," Energies, MDPI, vol. 14(22), pages 1-26, November.
    7. Syed Zahurul Islam & Mohammad Lutfi Othman & Muhammad Saufi & Rosli Omar & Arash Toudeshki & Syed Zahidul Islam, 2020. "Photovoltaic modules evaluation and dry-season energy yield prediction model for NEM in Malaysia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-25, November.
    8. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    9. Tithy Dev & Morteza Haghiri & Gabriela Sabau, 2024. "Impacts of Urbanization on Energy Consumption in the South Asian Association for Regional Cooperation Zone," Sustainability, MDPI, vol. 16(18), pages 1-15, September.
    10. Umish Srivastva & K Ravi Kumar & RK Malhotra & SC Kaushik, 2021. "Analytical assessment of a concentrated solar sub-critical thermal power plant using low temperature heat transfer fluid," Energy & Environment, , vol. 32(8), pages 1524-1542, December.
    11. Javed Khan Bhutto, 2024. "Augmented Two-Stage Hierarchical Controller for Distributed Power Generation System Powered by Renewable Energy: Development and Performance Analysis," Sustainability, MDPI, vol. 16(14), pages 1-21, July.
    12. Mustafa Muthanna Najm Shahrabani & Rasa Apanaviciene, 2024. "An AI-Based Evaluation Framework for Smart Building Integration into Smart City," Sustainability, MDPI, vol. 16(18), pages 1-35, September.
    13. Marcos A. Ponce-Jara & Ivan Pazmino & Ángelo Moreira-Espinoza & Alfonso Gunsha-Morales & Catalina Rus-Casas, 2024. "Assessment of Single-Axis Solar Tracking System Efficiency in Equatorial Regions: A Case Study of Manta, Ecuador," Energies, MDPI, vol. 17(16), pages 1-19, August.
    14. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    15. Ridha Djamel Mohammedi & Djamal Gozim & Abdellah Kouzou & Mustafa Mosbah & Ahmed Hafaifa & Jose Rodriguez & Mohamed Abdelrahem, 2024. "Simultaneous Optimization of Network Reconfiguration and Soft Open Points Placement in Radial Distribution Systems Using a Lévy Flight-Based Improved Equilibrium Optimizer," Energies, MDPI, vol. 17(23), pages 1-37, November.
    16. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    17. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    18. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma, 2024. "Design and Development of Grid Connected Renewable Energy System for Electric Vehicle Loads in Taif, Kingdom of Saudi Arabia," Energies, MDPI, vol. 17(16), pages 1-36, August.
    19. Cătălin Alexandru, 2024. "Simulation and Optimization of a Dual-Axis Solar Tracking Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
    20. Yuan Liu & Yamin Ding & Pei Jiang & Xugang Jin & Xinlin Wu & Zhanji Zheng, 2024. "Joint Optimal Design of Electric Bus Service and Charging Facilities," Sustainability, MDPI, vol. 16(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5315-:d:1420036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.