IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4048-d1456665.html
   My bibliography  Save this article

Profitability Analyses for Residential Battery Investments: A Norwegian Case Study

Author

Listed:
  • Heidi S. Nygård

    (Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway)

  • Stig Ødegaard Ottesen

    (Smart Innovation Norway, 1783 Halden, Norway)

  • Olav Henrik Skonnord

    (Smart Innovation Norway, 1783 Halden, Norway)

Abstract

With the higher penetration of intermittent renewable energy sources in the electric power grid, more flexibility is needed to cope with challenges related to stability and reliability. Consumers can be part of the solution through demand response, for example, by investing in residential batteries that can charge and discharge based on price signals (implicit flexibility) or externally controlled based on grid-related needs (explicit flexibility). In this study, we investigate the feasibility of deploying residential batteries through a case study consisting of 20 households located in south-eastern Norway. The potential annual savings from implicit flexibility are optimized based on the retail electricity price, a power-based tariff, and potential revenues by selling electricity to the grid. Real historical price and consumption data with hourly resolutions from the entire year of 2022 are used as input for the optimization, yielding a theoretical profit potential. Based on this, profitability analyses are performed. The results show that the battery investments will not reach an economic break-even point during their lifetime under today’s electricity price conditions. However, future developments in profit increase from implicit flexibility, substantial investment support, or additional revenues from emerging flexibility markets could make the investment economically attractive for a regular consumer.

Suggested Citation

  • Heidi S. Nygård & Stig Ødegaard Ottesen & Olav Henrik Skonnord, 2024. "Profitability Analyses for Residential Battery Investments: A Norwegian Case Study," Energies, MDPI, vol. 17(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4048-:d:1456665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4048/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shirley Pon, 2017. "The Effect of Information on TOU Electricity Use: an Irish residential study," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    2. Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
    3. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    4. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    5. Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).
    6. Uddin, Kotub & Gough, Rebecca & Radcliffe, Jonathan & Marco, James & Jennings, Paul, 2017. "Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom," Applied Energy, Elsevier, vol. 206(C), pages 12-21.
    7. Goop, Joel & Nyholm, Emil & Odenberger, Mikael & Johnsson, Filip, 2021. "Impact of electricity market feedback on investments in solar photovoltaic and battery systems in Swedish single-family dwellings," Renewable Energy, Elsevier, vol. 163(C), pages 1078-1091.
    8. Al Khafaf, Nameer & Rezaei, Ahmad Asgharian & Moradi Amani, Ali & Jalili, Mahdi & McGrath, Brendan & Meegahapola, Lasantha & Vahidnia, Arash, 2022. "Impact of battery storage on residential energy consumption: An Australian case study based on smart meter data," Renewable Energy, Elsevier, vol. 182(C), pages 390-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela María Gómez-Restrepo & Juan David González-Ruiz & Sergio Botero Botero, 2024. "Financial Investment Valuation Models for Photovoltaic and Energy Storage Projects: Trends and Challenges," Energies, MDPI, vol. 17(11), pages 1-29, May.
    2. Goop, Joel & Nyholm, Emil & Odenberger, Mikael & Johnsson, Filip, 2021. "Impact of electricity market feedback on investments in solar photovoltaic and battery systems in Swedish single-family dwellings," Renewable Energy, Elsevier, vol. 163(C), pages 1078-1091.
    3. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    4. Heine, Karl & Thatte, Amogh & Tabares-Velasco, Paulo Cesar, 2019. "A simulation approach to sizing batteries for integration with net-zero energy residential buildings," Renewable Energy, Elsevier, vol. 139(C), pages 176-185.
    5. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    6. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    7. de Souza Dutra, Michael David & da Conceição Júnior, Gerson & de Paula Ferreira, William & Campos Chaves, Matheus Roberto, 2020. "A customized transition towards smart homes: A fast framework for economic analyses," Applied Energy, Elsevier, vol. 262(C).
    8. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    9. Berrueta, Alberto & Heck, Michael & Jantsch, Martin & Ursúa, Alfredo & Sanchis, Pablo, 2018. "Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants," Applied Energy, Elsevier, vol. 228(C), pages 1-11.
    10. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    11. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
    12. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    13. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    15. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    16. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    17. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma & Giovanni Pau, 2024. "A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 17(16), pages 1-35, August.
    18. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    19. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    20. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4048-:d:1456665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.