Design and Manufacturing Challenges in PEMFC Flow Fields—A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- James Chilver-Stainer & Anas F. A. Elbarghthi & Chuang Wen & Mi Tian, 2023. "Power Output Optimisation via Arranging Gas Flow Channels for Low-Temperature Polymer Electrolyte Membrane Fuel Cell (PEMFC) for Hydrogen-Powered Vehicles," Energies, MDPI, vol. 16(9), pages 1-18, April.
- Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
- Arun Saco, S. & Thundil Karuppa Raj, R. & Karthikeyan, P., 2016. "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," Energy, Elsevier, vol. 113(C), pages 558-573.
- Chiu, Han-Chieh & Jang, Jer-Huan & Yan, Wei-Mon & Li, Hung-Yi & Liao, Chih-Cheng, 2012. "A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields," Applied Energy, Elsevier, vol. 96(C), pages 359-370.
- Guodong Zhang & Zhen Guan & Da Li & Guoxiang Li & Shuzhan Bai & Ke Sun & Hao Cheng, 2023. "Optimization Design of a Parallel Flow Field for PEMFC with Bosses in Flow Channels," Energies, MDPI, vol. 16(14), pages 1-26, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rocha, C. & Knöri, T. & Ribeirinha, P. & Gazdzicki, P., 2024. "A review on flow field design for proton exchange membrane fuel cells: Challenges to increase the active area for MW applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
- Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2014. "Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition," Applied Energy, Elsevier, vol. 136(C), pages 509-518.
- Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
- Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
- Elisabetta Arato & Marzia Pinna & Michela Mazzoccoli & Barbara Bosio, 2016. "Gas-Phase Mass-Transfer Resistances at Polymeric Electrolyte Membrane Fuel Cells Electrodes: Theoretical Analysis on the Effectiveness of Interdigitated and Serpentine Flow Arrangements," Energies, MDPI, vol. 9(4), pages 1-16, March.
- Tian, Cong & Yuan, Fang & Deng, Tianlun & He, Qianhui & Hu, Cen & Chen, Yong & Liu, Wei, 2024. "Coupled optimization of auxiliary channels and porosity gradient of GDL for PEMFC," Energy, Elsevier, vol. 301(C).
- Wang, H.Y. & Yang, W.J. & Kim, Y.B., 2014. "Analyzing in-plane temperature distribution via a micro-temperature sensor in a unit polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 124(C), pages 148-155.
- Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
- Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
- Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
- Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
- Suprava Chakraborty & Devaraj Elangovan & Karthikeyan Palaniswamy & Ashley Fly & Dineshkumar Ravi & Denis Ashok Sathia Seelan & Thundil Karuppa Raj Rajagopal, 2022. "A Review on the Numerical Studies on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) Flow Channel Designs for Automotive Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
- Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
- Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.
- Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
- Xie, Biao & Zhang, Hanyang & Huo, Wenming & Wang, Renfang & Zhu, Ying & Wu, Lizhen & Zhang, Guobin & Ni, Meng & Jiao, Kui, 2023. "Large-scale three-dimensional simulation of proton exchange membrane fuel cell considering detailed water transition mechanism," Applied Energy, Elsevier, vol. 331(C).
- Pandu Ranga Tirumalasetti & Fang-Bor Weng & Mangaliso Menzi Dlamini & Chia-Hung Chen, 2024. "Numerical Simulation of Double Layered Wire Mesh Integration on the Cathode for a Proton Exchange Membrane Fuel Cell (PEMFC)," Energies, MDPI, vol. 17(2), pages 1-15, January.
- Li, Zhengyan & Xian, Lei & Wang, Qiuyu & Wang, Junwei & Chen, Lei & Tao, Wen-Quan, 2024. "Performance enhancement of proton exchange membrane fuel cell by utilizing a blocked regulated tri-serpentine flow field: Comprehensive optimization with variable block heights and multiple auxiliary ," Applied Energy, Elsevier, vol. 372(C).
- Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
More about this item
Keywords
PEMFC; bipolar plates; plate material; micro-channel; flow pattern;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3499-:d:1436707. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.