IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223015529.html
   My bibliography  Save this article

Multi-objective optimisation of a power generation system integrating solid oxide fuel cell and recuperated supercritical carbon dioxide cycle

Author

Listed:
  • Roy, Dibyendu
  • Samanta, Samiran
  • Roy, Sumit
  • Smallbone, Andrew
  • Roskilly, Anthony Paul

Abstract

This article presents an advanced power generation system that integrates a solid oxide fuel cell (SOFC) module with a recuperated supercritical CO2 (s-CO2) cycle. The waste heat generated by the exhaust of the SOFC module is utilised to drive the s-CO2 cycle, resulting in enhanced energy efficiency. The performance of the system was investigated through thermodynamic and economic analyses and optimised using response surface methodology. The optimisation process focused on two objectives: maximising the energy efficiency of the integrated system and minimising the levelised cost of electricity. The study meticulously analysed the effects of important variables such as current density, fuel utilisation factor, and operating temperature of the fuel cell. The optimisation efforts yielded impressive results, achieving an energy efficiency of 64% and a levelised cost of electricity (LCOE) of 0.18£/kWh. The proposed system surpassed traditional natural gas-fuelled power plants in terms of efficiency and specific emissions. Furthermore, the system's performance was evaluated when operated with green hydrogen fuel, which led to a substantial improvement in efficiency, estimated at 73.37%. However, it was found that the LCOE of the system is relatively higher and approximately 15% higher than the methane-based alternative.

Suggested Citation

  • Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Multi-objective optimisation of a power generation system integrating solid oxide fuel cell and recuperated supercritical carbon dioxide cycle," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015529
    DOI: 10.1016/j.energy.2023.128158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
    2. Rath, Sebastian & Mickoleit, Erik & Gampe, Uwe & Breitkopf, Cornelia & Jäger, Andreas, 2022. "Systematic analysis of additives on the performance parameters of sCO2 cycles and their individual effects on the cycle characteristics," Energy, Elsevier, vol. 252(C).
    3. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Paul Roskilly, Anthony, 2023. "Fuel cell integrated carbon negative power generation from biomass," Applied Energy, Elsevier, vol. 331(C).
    4. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
    5. Khurana, Hitesh & Majumdar, Rudrodip & Saha, Sandip K., 2022. "Response Surface Methodology-based prediction model for working fluid temperature during stand-alone operation of vertical cylindrical thermal energy storage tank," Renewable Energy, Elsevier, vol. 188(C), pages 619-636.
    6. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.
    3. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    4. Marialaura Di Somma & Martina Caliano & Viviana Cigolotti & Giorgio Graditi, 2021. "Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System," Energies, MDPI, vol. 14(23), pages 1-17, December.
    5. Jiaping Xie & Chao Wang & Wei Zhu & Hao Yuan, 2021. "A Multi-Stage Fault Diagnosis Method for Proton Exchange Membrane Fuel Cell Based on Support Vector Machine with Binary Tree," Energies, MDPI, vol. 14(20), pages 1-22, October.
    6. Costas Athanasiou & Christos Drosakis & Gaylord Kabongo Booto & Costas Elmasides, 2022. "Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems," Energies, MDPI, vol. 16(1), pages 1-30, December.
    7. Genovese, M. & Piraino, F. & Fragiacomo, P., 2024. "3E analysis of a virtual hydrogen valley supported by railway-based H2 delivery for multi-transportation service," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Viole, Isabelle & Valenzuela-Venegas, Guillermo & Zeyringer, Marianne & Sartori, Sabrina, 2023. "A renewable power system for an off-grid sustainable telescope fueled by solar power, batteries and green hydrogen," Energy, Elsevier, vol. 282(C).
    9. Sergey V. Mitrofanov & Natalya G. Kiryanova & Anna M. Gorlova, 2021. "Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review," Energies, MDPI, vol. 14(18), pages 1-21, September.
    10. María Villarreal Vives, Ana & Wang, Ruiqi & Roy, Sumit & Smallbone, Andrew, 2023. "Techno-economic analysis of large-scale green hydrogen production and storage," Applied Energy, Elsevier, vol. 346(C).
    11. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    12. Tavakoli, Navid & Khoshkenar, Payam & Pourfayaz, Fathollah, 2024. "A combined approach-based techno-economic-environmental multi-optimization of a hydrogen generation system through waste biomass air-steam gasification," Renewable Energy, Elsevier, vol. 225(C).
    13. Matteo Genovese & Viviana Cigolotti & Elio Jannelli & Petronilla Fragiacomo, 2023. "Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications," Energies, MDPI, vol. 16(6), pages 1-31, March.
    14. Farhad Zishan & Oscar Danilo Montoya & Diego Armando Giral-Ramírez, 2023. "New Design and Study of the Transient State and Maximum Power Point Tracking of Solid Oxide Fuel Cells Using Fuzzy Control," Energies, MDPI, vol. 16(6), pages 1-19, March.
    15. Alice Di Bella & Massimo Tavoni, 2022. "Demand-side policies for power generation in response to the energy crisis: a model analysis for Italy," Papers 2212.06744, arXiv.org.
    16. Wolf, P. & Klingler, M. & Schmidt, M. & Kurze, M., 2023. "Ammonia-fed fuel cells for a locally CO2-free energy supply in the telecommunications industry - A comparative techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    18. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    19. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    20. Irene Martínez Reverte & Tomás Gómez-Navarro & Carlos Sánchez-Díaz & Carla Montagud Montalvá, 2022. "Evaluation of Alternatives for Energy Supply from Fuel Cells in Compact Cities in the Mediterranean Climate; Case Study: City of Valencia," Energies, MDPI, vol. 15(12), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.