IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4518-d844002.html
   My bibliography  Save this article

Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe

Author

Listed:
  • Romuald Masnicki

    (Department of Marine Electrical Power Engineering, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland)

  • Janusz Mindykowski

    (Department of Ship Electrical Power Engineering, Faculty of Marine Electrical Engineering, Gdynia Maritime University, Morska St. 83, 81-225 Gdynia, Poland)

  • Beata Palczynska

    (Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland)

Abstract

The paper deals with the important challenges in terms of electricity transmission by means of underground cable lines. The power cable’s performance is characterized by an ampacity that represents its maximum electric current-carrying capacity. The ampacity of power cables depends on their ability to diffuse the heat generated by the current flow into the environment. In the performed research, the analysis of the efficiency of heat dissipation from the cable is based on the measurement of temperatures at selected points in individual sections of the cable. As a consequence, the proposed test stand and applied research methodology are vital for the experimental evaluation of the analyzed thermal phenomena in the investigated underground cable lines. The research program covers an in-depth analysis based on the results related to the vital parameters of the investigated cable. The experimental methodology was used to analyze the influence of the properties of the medium surrounding the cable on its temperature, and thus on the ampacity of the cable. A novelty of this paper concerns the carrying out of the experimental laboratory research with actual measurements of the temperature distribution in specific points of the casing pipe based on the original test stand. The paper presents the novel concept of the developed stand for testing heat dissipation from the cable in a casing pipe with pipe sections filled with various media, equipped with a power supply system ensuring easy control of the power dissipated in the cable. The preliminary results of the comparative tests, in which the temperature distribution in the sections of the casing pipes was recorded, indicate that the findings are satisfactorily consistent with the assumptions related to the purpose of the research. The use of appropriate materials surrounding the cable contributes to more effective heat dissipation, and as it has been shown for the examined case in originally planned and conducted tests, it can lower the cable temperature by more than 20 °C, contributing to a significant increase in the ampacity of the cable. For example, it was recorded that for different media filling the pipes, the cable reached 30 °C with different currents flowing through cable of 60 A and 120 A, respectively.

Suggested Citation

  • Romuald Masnicki & Janusz Mindykowski & Beata Palczynska, 2022. "Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe," Energies, MDPI, vol. 15(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4518-:d:844002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2019. "Underground cables vs. overhead lines: Quasi-experimental evidence for the effects on public risk expectations, attitudes, and protest behavior," Energy Policy, Elsevier, vol. 125(C), pages 456-466.
    2. Paweł Ocłoń & Janusz Pobędza & Paweł Walczak & Piotr Cisek & Andrea Vallati, 2020. "Experimental Validation of a Heat Transfer Model in Underground Power Cable Systems," Energies, MDPI, vol. 13(7), pages 1-10, April.
    3. Shahbaz Ahmad & Zarghaam Haider Rizvi & Joan Chetam Christine Arp & Frank Wuttke & Vineet Tirth & Saiful Islam, 2021. "Evolution of Temperature Field around Underground Power Cable for Static and Cyclic Heating," Energies, MDPI, vol. 14(23), pages 1-19, December.
    4. Christoph Verschaffel-Drefke & Markus Schedel & Constantin Balzer & Volker Hinrichsen & Ingo Sass, 2021. "Heat Dissipation in Variable Underground Power Cable Beddings: Experiences from a Real Scale Field Experiment," Energies, MDPI, vol. 14(21), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    2. Ahmet Ozyesil & Burak Altun & Yunus Berat Demirol & Bora Alboyaci, 2024. "The Effect of the Vertical Layout on Underground Cable Current Carrying Capacity," Energies, MDPI, vol. 17(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz Ahmad & Zarghaam Haider Rizvi & Joan Chetam Christine Arp & Frank Wuttke & Vineet Tirth & Saiful Islam, 2021. "Evolution of Temperature Field around Underground Power Cable for Static and Cyclic Heating," Energies, MDPI, vol. 14(23), pages 1-19, December.
    2. Kui Liu & Renato Zagorščak & Richard J. Sandford & Oliver N. Cwikowski & Alexander Yanushkevich & Hywel R. Thomas, 2022. "Insights into the Thermal Performance of Underground High Voltage Electricity Transmission Lines through Thermo-Hydraulic Modelling," Energies, MDPI, vol. 15(23), pages 1-25, November.
    3. Simon Fink & Eva Ruffing & Tobias Burst & Sara Katharina Chinnow, 2023. "Emotional citizens, detached interest groups? The use of emotional language in public policy consultations," Policy Sciences, Springer;Society of Policy Sciences, vol. 56(3), pages 469-497, September.
    4. Ocłoń, Paweł, 2021. "The effect of soil thermal conductivity and cable ampacity on the thermal performance and material costs of underground transmission line," Energy, Elsevier, vol. 231(C).
    5. Bogdan Perka & Karol Piwowarski, 2021. "A Method for Determining the Impact of Ambient Temperature on an Electrical Cable during a Fire," Energies, MDPI, vol. 14(21), pages 1-19, November.
    6. Matej Tazky & Michal Regula & Alena Otcenasova, 2021. "Impact of Changes in a Distribution Network Nature on the Capacitive Reactive Power Flow into the Transmission Network in Slovakia," Energies, MDPI, vol. 14(17), pages 1-16, August.
    7. Mueller, Christoph Emanuel, 2020. "Why do residents participate in high-voltage transmission line planning procedures? Findings from two power grid expansion regions in Germany," Energy Policy, Elsevier, vol. 145(C).
    8. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Zarghaam Haider Rizvi & Syed Jawad Akhtar & Syed Mohammad Baqir Husain & Mohiuddeen Khan & Hasan Haider & Sakina Naqvi & Vineet Tirth & Frank Wuttke, 2022. "Neural Network Approaches for Computation of Soil Thermal Conductivity," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
    10. Diana Enescu & Pietro Colella & Angela Russo & Radu Florin Porumb & George Calin Seritan, 2021. "Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables," Energies, MDPI, vol. 14(9), pages 1-23, May.
    11. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Natalia Radwan-Pragłowska & Artur Cebula, 2020. "The Short-Circuit Protections in Hybrid Systems with Low-Power Synchronous Generators," Energies, MDPI, vol. 14(1), pages 1-12, December.
    12. Kai Chen & Yi Yue & Yuejin Tang, 2021. "Research on Temperature Monitoring Method of Cable on 10 kV Railway Power Transmission Lines Based on Distributed Temperature Sensor," Energies, MDPI, vol. 14(12), pages 1-15, June.
    13. Mueller, Christoph Emanuel, 2020. "Examining the inter-relationships between procedural fairness, trust in actors, risk expectations, perceived benefits, and attitudes towards power grid expansion projects," Energy Policy, Elsevier, vol. 141(C).
    14. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4518-:d:844002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.