IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3509-d1436943.html
   My bibliography  Save this article

CH 4 Adsorption in Wet Metal-Organic Frameworks under Gas Hydrate Formation Conditions Using A Large Reactor

Author

Listed:
  • Jyoti Shanker Pandey

    (Center for Energy Resource Engineering (CERE), Department of Chemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
    Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica, Instituto Universitario de Materiales, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, E-03690 San Vicente del Raspeig, Spain)

  • Nehir Öncü

    (Center for Energy Resource Engineering (CERE), Department of Chemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
    Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Türkiye)

  • Nicolas von Solms

    (Center for Energy Resource Engineering (CERE), Department of Chemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark)

Abstract

Nanoporous materials, such as metal-organic frameworks (MOFs), are renowned for their high selectivity as gas adsorbents due to their specific surface area, nanoporosity, and active surface chemistry. A significant challenge for their widespread application is reduced gas uptake in wet conditions, attributed to competitive adsorption between gas and water. Recent studies of gas adsorption in wet materials have typically used small amounts of powdered porous materials (in the milligram range) within very small reactors (1–5 mL). This leaves a gap in knowledge about gas adsorption behaviors in larger reactors and with increased MOF sample sizes (to the gram scale). Additionally, there has been a notable absence of experimental research on MOFs heavily saturated with water. In this study, we aimed to fill the gaps in our understanding of gas adsorption in wet conditions by measuring CH 4 adsorption in MOFs. To do this, we used larger MOF samples (in grams) and a large-volume reactor. Our selection of commercially available MOFs, including HKUST-1, ZIF-8, MOF-303, and activated carbon, was based on their widespread application, available previous research, and differences in hydrophobicity. Using a volumetric approach, we measured high-pressure isotherms (at T = 274.15 K) to compare the moles of gas adsorbed under both dry and wet conditions across different MOFs and weights. The experimental results indicate that water decreases total CH 4 adsorption in MOFs, with a more pronounced decrease in hydrophilic MOFs compared to hydrophobic ones at lower pressures. However, hydrophilic MOFs exhibited stepped isotherms at higher pressures, suggesting water converts to hydrate, positively impacting total gas uptake. In contrast, the hydrophobic ZIF-8 did not promote hydrate formation due to particle aggregation in the presence of water, leading to a loss of surface area and surface charge. This study highlights the additional challenges associated with hydrate-MOF synergy when experiments are scaled up and larger sample sizes are used. Future studies should consider using monolith or pellet forms of MOFs to address the limitations of powdered MOFs in scale-up studies.

Suggested Citation

  • Jyoti Shanker Pandey & Nehir Öncü & Nicolas von Solms, 2024. "CH 4 Adsorption in Wet Metal-Organic Frameworks under Gas Hydrate Formation Conditions Using A Large Reactor," Energies, MDPI, vol. 17(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3509-:d:1436943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jingqi Wang & Jiapeng Liu & Hongshuai Wang & Musen Zhou & Guolin Ke & Linfeng Zhang & Jianzhong Wu & Zhifeng Gao & Diannan Lu, 2024. "A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xueru Yan & Tianqi Song & Min Li & Zhi Wang & Xinlei Liu, 2024. "Sub-micro porous thin polymer membranes for discriminating H2 and CO2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Letitia Petrescu & Codruta-Maria Cormos, 2022. "Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment," Energies, MDPI, vol. 15(21), pages 1-23, October.
    6. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    8. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    9. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Fu, Pengbo & Yu, Hao & Li, Qiqi & Cheng, Tingting & Zhang, Fangzheng & Yang, Tao & Huang, Yuan & Li, Jianping & Fang, Xiangchen & Xiu, Guangli & Wang, Hualin, 2022. "Cyclone rotational drying of lignite based on particle high-speed self-rotation: Lower carrier gas temperature and shorter residence time," Energy, Elsevier, vol. 244(PB).
    12. Bruno Franco & Lieven Clarisse & Martin Van Damme & Juliette Hadji-Lazaro & Cathy Clerbaux & Pierre-François Coheur, 2022. "Ethylene industrial emitters seen from space," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Christopher J. Hartwick & Eric W. Reinheimer & Leonard R. MacGillivray, 2024. "A molecular T-pentomino for separating BTEX hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Yi-Xin Liu & Ping-Xin Wu & Jing-Yi Dai & Ping-Wei Cai & Cai Sun & Shou-Tian Zheng, 2024. "Site differentiation strategy for selective strontium uptake and elution within an all-inorganic polyoxoniobate framework," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Enyu Wu & Xiao-Wen Gu & Di Liu & Xu Zhang & Hui Wu & Wei Zhou & Guodong Qian & Bin Li, 2023. "Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Tanmoy Maity & Susmita Sarkar & Susmita Kundu & Suvendu Panda & Arighna Sarkar & Raheel Hammad & Kalyaneswar Mandal & Soumya Ghosh & Jagannath Mondal & Ritesh Haldar, 2024. "Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3509-:d:1436943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.