Study on Heat and Mass Transfer Performance of Ultra-Thin Micro-Heat Pipes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Yi Wan & Jiajie Qian & Yuefeng Zhu & Hui Xu & Jingyuan Wang & Ying Gao & Junjie Ma & Yibao Kan & Tianrui Song & Hong Zhang, 2024. "Experimental Study of Composite Heat Pipe Radiator in Thermal Management of Electronic Components," Energies, MDPI, vol. 17(12), pages 1-14, June.
- Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
- Yuki Kameya & Ryota Osonoe & Yuto Anjo, 2020. "Hydrophilic Coating of Copper Particle Monolayer Wicks for Enhanced Passive Water Transport," Energies, MDPI, vol. 13(12), pages 1-10, June.
- Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.
- Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
- Wang, Xinyue & Liu, Yang & Tian, Tong & Li, Ji, 2022. "Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness," Applied Energy, Elsevier, vol. 319(C).
- Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
- Salmon, F. & Ghadim, H. Benisi & Godin, A. & Haillot, D. & Veillere, A. & Lacanette, D. & Duquesne, M., 2024. "Optimizing performance for cooling electronic components using innovative heterogeneous materials," Applied Energy, Elsevier, vol. 362(C).
- Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
- Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Yuqi Han & Weilin Zhuge & Jie Peng & Yuping Qian & Yangjun Zhang, 2023. "Numerical Investigation on Internal Structures of Ultra-Thin Heat Pipes for PEM Fuel Cells Cooling," Energies, MDPI, vol. 16(3), pages 1-22, January.
- Chen, Gong & Yan, Caiman & Yin, Shubin & Tang, Yong & Yuan, Wei & Zhang, Shiwei, 2024. "Vapor-liquid coplanar structure enables high thermal conductive and extremely ultrathin vapor chamber," Energy, Elsevier, vol. 301(C).
- Ng, Ving Onn & Hong, XiangYu & Yu, Hao & Wu, HengAn & Hung, Yew Mun, 2022. "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, Elsevier, vol. 326(C).
- Zhou, Guohui & Li, Ji & Jia, Zizhou, 2019. "Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module," Applied Energy, Elsevier, vol. 239(C), pages 859-875.
- Xia, Yang & Chen, Li & Luo, Jiwang & Tao, Wenquan, 2023. "Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization," Applied Energy, Elsevier, vol. 330(PA).
- Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.
- Haofan Mu & Weixiu Shi, 2024. "Review of Operation Performance and Application Status of Pulsating Heat Pipe," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
More about this item
Keywords
ultra-thin micro-heat pipe; heat and mass transfer performance; numerical simulation; CFD; UDF;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3426-:d:1433518. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.