IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2863-d1412663.html
   My bibliography  Save this article

Experimental Study of Composite Heat Pipe Radiator in Thermal Management of Electronic Components

Author

Listed:
  • Yi Wan

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
    These authors contributed equally to this work.)

  • Jiajie Qian

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
    These authors contributed equally to this work.)

  • Yuefeng Zhu

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Hui Xu

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Jingyuan Wang

    (Gansu Engineering Consulting Group Co., Ltd., Lanzhou 730030, China)

  • Ying Gao

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Junjie Ma

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Yibao Kan

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Tianrui Song

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Hong Zhang

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
    College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

Conventional straight fin (SF) radiators have difficulties meeting the cooling requirements of high-power electronic components. Therefore, based on the structure and technology of the detachable fin radiator, this paper proposes a kind of radiator embedded in the heat pipe base and uses the roll-bond flat heat pipe (RBFHP) to replace the traditional fin. The radiator has the advantages of modularity, easy manufacturing, low cost and good heat balance. In this study, the heat pipes (HPs)-RBFHPs radiator was tested in natural convection and forced convection to mimic the actual application scenario and compared with the conventional aluminum radiator. Heating power, angle, wind speed and other aspects were studied. The results showed that the cooling performance of the HPs-RBFHPs radiator was improved by 10.7% to 55% compared with that of the SF radiator under different working conditions. The minimum total thermal resistance in the horizontal state was only 0.37 °C/W. The temperature equalization of the base played a dominant role in the performance of the radiator at a large angle, and the fin group could be ineffective when the angle was greater than 60°. Under the most economical conditions with an inclination of 0° and a wind speed of 2 m/s, the input power was 340 W, the heat source temperature of the HPs-RBFHPs was only 64.2 °C, and the heat dissipation performance was 55.4% higher than that of SFs.

Suggested Citation

  • Yi Wan & Jiajie Qian & Yuefeng Zhu & Hui Xu & Jingyuan Wang & Ying Gao & Junjie Ma & Yibao Kan & Tianrui Song & Hong Zhang, 2024. "Experimental Study of Composite Heat Pipe Radiator in Thermal Management of Electronic Components," Energies, MDPI, vol. 17(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2863-:d:1412663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    5. Yuki Kameya & Ryota Osonoe & Yuto Anjo, 2020. "Hydrophilic Coating of Copper Particle Monolayer Wicks for Enhanced Passive Water Transport," Energies, MDPI, vol. 13(12), pages 1-10, June.
    6. Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.
    7. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    8. Wang, Xinyue & Liu, Yang & Tian, Tong & Li, Ji, 2022. "Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness," Applied Energy, Elsevier, vol. 319(C).
    9. Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
    10. Salmon, F. & Ghadim, H. Benisi & Godin, A. & Haillot, D. & Veillere, A. & Lacanette, D. & Duquesne, M., 2024. "Optimizing performance for cooling electronic components using innovative heterogeneous materials," Applied Energy, Elsevier, vol. 362(C).
    11. Yuming Xiang & Yonghua Sun & Guolin Li & Xiangjuan Liu & Lin Liu & Fangwei Zhao & Xibing Li, 2024. "Study on Heat and Mass Transfer Performance of Ultra-Thin Micro-Heat Pipes," Energies, MDPI, vol. 17(14), pages 1-14, July.
    12. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    13. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. Yuqi Han & Weilin Zhuge & Jie Peng & Yuping Qian & Yangjun Zhang, 2023. "Numerical Investigation on Internal Structures of Ultra-Thin Heat Pipes for PEM Fuel Cells Cooling," Energies, MDPI, vol. 16(3), pages 1-22, January.
    15. Chen, Gong & Yan, Caiman & Yin, Shubin & Tang, Yong & Yuan, Wei & Zhang, Shiwei, 2024. "Vapor-liquid coplanar structure enables high thermal conductive and extremely ultrathin vapor chamber," Energy, Elsevier, vol. 301(C).
    16. Ng, Ving Onn & Hong, XiangYu & Yu, Hao & Wu, HengAn & Hung, Yew Mun, 2022. "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, Elsevier, vol. 326(C).
    17. Zhou, Guohui & Li, Ji & Jia, Zizhou, 2019. "Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module," Applied Energy, Elsevier, vol. 239(C), pages 859-875.
    18. Xia, Yang & Chen, Li & Luo, Jiwang & Tao, Wenquan, 2023. "Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization," Applied Energy, Elsevier, vol. 330(PA).
    19. Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.
    20. Haofan Mu & Weixiu Shi, 2024. "Review of Operation Performance and Application Status of Pulsating Heat Pipe," Sustainability, MDPI, vol. 16(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2863-:d:1412663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.