The Role of Domestic Heat Pumps in Providing Flexibility to the UK Electricity System
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
- Canet, Alexandre & Qadrdan, Meysam, 2023. "Quantification of flexibility from the thermal mass of residential buildings in England and Wales," Applied Energy, Elsevier, vol. 349(C).
- Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
- Klaassen, E.A.M. & van Gerwen, R.J.F. & Frunt, J. & Slootweg, J.G., 2017. "A methodology to assess demand response benefits from a system perspective: A Dutch case study," Utilities Policy, Elsevier, vol. 44(C), pages 25-37.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
- Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
- Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
- Majdalani, Naim & Aelenei, Daniel & Lopes, Rui Amaral & Silva, Carlos Augusto Santo, 2020. "The potential of energy flexibility of space heating and cooling in Portugal," Utilities Policy, Elsevier, vol. 66(C).
- Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022.
"The case of 100% electrification of domestic heat in Great Britain,"
Working Papers
EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
- Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
- Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
- Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
- Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
- Jenny Crawley & Despina Manouseli & Peter Mallaburn & Cliff Elwell, 2022. "An Empirical Energy Demand Flexibility Metric for Residential Properties," Energies, MDPI, vol. 15(14), pages 1-18, July.
- Gaucher-Loksts, Erin & Athienitis, Andreas & Ouf, Mohamed, 2022. "Design and energy flexibility analysis for building integrated photovoltaics-heat pump combinations in a house," Renewable Energy, Elsevier, vol. 195(C), pages 872-884.
- Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
- Candas, Soner & Reveron Baecker, Beneharo & Mohapatra, Anurag & Hamacher, Thomas, 2023. "Optimization-based framework for low-voltage grid reinforcement assessment under various levels of flexibility and coordination," Applied Energy, Elsevier, vol. 343(C).
- Rahmatallah Poudineh & Donna Peng & Seyed Reza Mirnezami, 2020. "Innovation in regulated electricity networks: Incentivising tasks with highly uncertain outcomes," Competition and Regulation in Network Industries, , vol. 21(2), pages 166-192, June.
- Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
- Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
- Liang, Youcai & Al-Tameemi, Mohammed & Yu, Zhibin, 2018. "Investigation of a gas-fuelled water heater based on combined power and heat pump cycles," Applied Energy, Elsevier, vol. 212(C), pages 1476-1488.
- Lee, Zachary E. & Zhang, K. Max, 2021. "Scalable identification and control of residential heat pumps: A minimal hardware approach," Applied Energy, Elsevier, vol. 286(C).
More about this item
Keywords
flexibility; heat pumps; demand response; electricity system; buildings;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2995-:d:1417035. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.