IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6085-d448654.html
   My bibliography  Save this article

Design, Valuation and Comparison of Demand Response Strategies for Congestion Management

Author

Listed:
  • Osaru Agbonaye

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK)

  • Patrick Keatley

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK)

  • Ye Huang

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK)

  • Motasem Bani Mustafa

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK)

  • Neil Hewitt

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK)

Abstract

Decarbonisation of heat and transport will cause congestion issues in distribution networks. To avoid expensive network investments, demand flexibility is necessary to move loads from peak to off-peak periods. We provide a method and metric for assessing and selecting the optimal demand response strategy for a given network congestion scenario and applied it to a case study network in Coleraine, Northern Ireland. We proposed a Price Approximation/Mean Grouping strategy to deal with the issue of congestions occurring at the lowest-price period in real-time pricing schemes. The Mean Grouping strategy increased the average lowest-price hours from 1.32 to 3.76. We show that a three-cluster tariff is effective in solving medium congestion issues in Northern Ireland and could save consumers an average of £117/year on their heating bill. However, for networks with low headroom suffering from serious congestion issues, a smart control strategy is needed.

Suggested Citation

  • Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6085-:d:448654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. El Geneidy, Rami & Howard, Bianca, 2020. "Contracted energy flexibility characteristics of communities: Analysis of a control strategy for demand response," Applied Energy, Elsevier, vol. 263(C).
    2. Valenzuela, Jorge & Thimmapuram, Prakash R. & Kim, Jinho, 2012. "Modeling and simulation of consumer response to dynamic pricing with enabled technologies," Applied Energy, Elsevier, vol. 96(C), pages 122-132.
    3. repec:hal:spmain:info:hdl:2441/c6t1fl36hv9s7q89j8m3l01c9 is not listed on IDEAS
    4. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    5. Le, Khoa Xuan & Huang, Ming Jun & Wilson, Christopher & Shah, Nikhilkumar N. & Hewitt, Neil J., 2020. "Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment," Applied Energy, Elsevier, vol. 257(C).
    6. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    7. Chao, Hung-po, 2010. "Price-Responsive Demand Management for a Smart Grid World," The Electricity Journal, Elsevier, vol. 23(1), pages 7-20, January.
    8. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.
    9. Gu, Chenghong & Yan, Xiaohe & Yan, Zhang & Li, Furong, 2017. "Dynamic pricing for responsive demand to increase distribution network efficiency," Applied Energy, Elsevier, vol. 205(C), pages 236-243.
    10. Anette Boom & Sebastian Schwenen, 2021. "Is real-time pricing smart for consumers?," Journal of Regulatory Economics, Springer, vol. 60(2), pages 193-213, December.
    11. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    12. Koliou, Elta & Bartusch, Cajsa & Picciariello, Angela & Eklund, Tobias & Söder, Lennart & Hakvoort, Rudi A., 2015. "Quantifying distribution-system operators' economic incentives to promote residential demand response," Utilities Policy, Elsevier, vol. 35(C), pages 28-40.
    13. Klaassen, E.A.M. & van Gerwen, R.J.F. & Frunt, J. & Slootweg, J.G., 2017. "A methodology to assess demand response benefits from a system perspective: A Dutch case study," Utilities Policy, Elsevier, vol. 44(C), pages 25-37.
    14. Evens Salies, 2012. "Real-time pricing when consumers have saving costs," Working Papers hal-01070292, HAL.
    15. Passey, Robert & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2017. "Designing more cost reflective electricity network tariffs with demand charges," Energy Policy, Elsevier, vol. 109(C), pages 642-649.
    16. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Bani-Mustafa, Motasem & Ademulegun, Oluwasola O. & Hewitt, Neil, 2020. "Value of demand flexibility for providing ancillary services: A case for social housing in the Irish DS3 market," Utilities Policy, Elsevier, vol. 67(C).
    17. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    18. Abdelmotteleb, Ibtihal & Gómez, Tomás & Chaves Ávila, José Pablo & Reneses, Javier, 2018. "Designing efficient distribution network charges in the context of active customers," Applied Energy, Elsevier, vol. 210(C), pages 815-826.
    19. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    20. repec:hal:wpspec:info:hdl:2441/c6t1fl36hv9s7q89j8m3l01c9 is not listed on IDEAS
    21. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    22. Wang, Andong & Li, Rongling & You, Shi, 2018. "Development of a data driven approach to explore the energy flexibility potential of building clusters," Applied Energy, Elsevier, vol. 232(C), pages 89-100.
    23. Fischer, David & Wolf, Tobias & Wapler, Jeannette & Hollinger, Raphael & Madani, Hatef, 2017. "Model-based flexibility assessment of a residential heat pump pool," Energy, Elsevier, vol. 118(C), pages 853-864.
    24. Brown, Toby & Faruqui, Ahmad & Grausz, Léa, 2015. "Efficient tariff structures for distribution network services," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 139-149.
    25. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    26. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    27. Schreiber, Michael & Wainstein, Martin E. & Hochloff, Patrick & Dargaville, Roger, 2015. "Flexible electricity tariffs: Power and energy price signals designed for a smarter grid," Energy, Elsevier, vol. 93(P2), pages 2568-2581.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Elliott & Joachim Geske & Richard Green, 2022. "Business Models for Active Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.
    2. Jesús Muñoz-Cruzado-Alba & Rossano Musca & Javier Ballestín-Fuertes & José F. Sanz-Osorio & David Miguel Rivas-Ascaso & Michael P. Jones & Angelo Catania & Emil Goosen, 2021. "Power Grid Integration and Use-Case Study of Acid-Base Flow Battery Technology," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
    3. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Odiase, Friday O. & Hewitt, Neil, 2022. "Value of demand flexibility for managing wind energy constraint and curtailment," Renewable Energy, Elsevier, vol. 190(C), pages 487-500.
    4. Iurii Prokazov & Vladimir Gorbanyov & Vadim Samusenkov & Irina Razinkina & Monika Chłąd, 2021. "Assessing the Flexibility of Renewable Energy Multinational Corporations," Energies, MDPI, vol. 14(13), pages 1-19, June.
    5. Francesco Mancini & Jacopo Cimaglia & Gianluigi Lo Basso & Sabrina Romano, 2021. "Implementation and Simulation of Real Load Shifting Scenarios Based on a Flexibility Price Market Strategy—The Italian Residential Sector as a Case Study," Energies, MDPI, vol. 14(11), pages 1-21, May.
    6. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Ademulegun, Oluwasola O. & Hewitt, Neil, 2021. "Mapping demand flexibility: A spatio-temporal assessment of flexibility needs, opportunities and response potential," Applied Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Beaufils, Timothé & Pineau, Pierre-Olivier, 2019. "Assessing the impact of residential load profile changes on electricity distribution utility revenues under alternative rate structures," Utilities Policy, Elsevier, vol. 61(C).
    3. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    4. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    5. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    6. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    7. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    9. Madia Safdar & Ghulam Amjad Hussain & Matti Lehtonen, 2019. "Costs of Demand Response from Residential Customers’ Perspective," Energies, MDPI, vol. 12(9), pages 1-16, April.
    10. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
    11. Luis Alejandro Arias & Edwin Rivas & Francisco Santamaria & Victor Hernandez, 2018. "A Review and Analysis of Trends Related to Demand Response," Energies, MDPI, vol. 11(7), pages 1-24, June.
    12. Roberts, Mike B. & Sharma, Arijit & MacGill, Iain, 2022. "Efficient, effective and fair allocation of costs and benefits in residential energy communities deploying shared photovoltaics," Applied Energy, Elsevier, vol. 305(C).
    13. Saumweber, Andrea & Wederhake, Lars & Cardoso, Gonçalo & Fridgen, Gilbert & Heleno, Miguel, 2021. "Designing Pareto optimal electricity retail rates when utility customers are prosumers," Energy Policy, Elsevier, vol. 156(C).
    14. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    15. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    16. Voulis, Nina & van Etten, Max J.J. & Chappin, Émile J.L. & Warnier, Martijn & Brazier, Frances M.T., 2019. "Rethinking European energy taxation to incentivise consumer demand response participation," Energy Policy, Elsevier, vol. 124(C), pages 156-168.
    17. Heshmati, Almas, 2012. "Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market," IZA Discussion Papers 6637, Institute of Labor Economics (IZA).
    18. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    19. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    20. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6085-:d:448654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.