IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53016-8.html
   My bibliography  Save this article

One-pot microfluidic fabrication of micro ceramic particles

Author

Listed:
  • Chenchen Zhou

    (Nanyang Technological University
    Nanyang Technological University)

  • Shuaishuai Liang

    (University of Science and Technology Beijing)

  • Bin Qi

    (University of Science and Technology Beijing)

  • Chenxu Liu

    (Tsinghua University)

  • Nam-Joon Cho

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

In the quest for miniaturization across technical disciplines, microscale ceramic blocks emerge as pivotal components, with performance critically dependent on precise scales and intricate shapes. Sharp-edged ceramic microparticles, applied from micromachining to microelectronics, require innovative fabrication techniques for high-throughput production while maintaining structural complexity and mechanical integrity. This study introduces a “one-pot microfluidic fabrication” system incorporating two device fabrication strategies, “groove & tongue” and sliding assembling, achieving an unprecedented array of microparticles with diverse, complex shapes and refined precision, outperforming traditional methods in production rate and quality. Optimally designed sintering profiles based on derivative thermogravimetry enhance microparticles’ shape retention and structural strength. Compression and scratch tests validate the superiority of microparticles, suggesting their practicability for diverse applications, such as precise micromachining, sophisticated microrobotics and delicate microsurgical tools. This advancement marks a shift in microscale manufacturing, offering a scalable solution to meet the demanding specifications of miniaturized technology components.

Suggested Citation

  • Chenchen Zhou & Shuaishuai Liang & Bin Qi & Chenxu Liu & Nam-Joon Cho, 2024. "One-pot microfluidic fabrication of micro ceramic particles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53016-8
    DOI: 10.1038/s41467-024-53016-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53016-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53016-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhitao Zhang & Weichen Wang & Yuanwen Jiang & Yi-Xuan Wang & Yilei Wu & Jian-Cheng Lai & Simiao Niu & Chengyi Xu & Chien-Chung Shih & Cheng Wang & Hongping Yan & Luke Galuska & Nathaniel Prine & Hung-, 2022. "High-brightness all-polymer stretchable LED with charge-trapping dilution," Nature, Nature, vol. 603(7902), pages 624-630, March.
    2. Zhijian Shen & Zhe Zhao & Hong Peng & Mats Nygren, 2002. "Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening," Nature, Nature, vol. 417(6886), pages 266-269, May.
    3. Renxuan Xie & Albree R. Weisen & Youngmin Lee & Melissa A. Aplan & Abigail M. Fenton & Ashley E. Masucci & Fabian Kempe & Michael Sommer & Christian W. Pester & Ralph H. Colby & Enrique D. Gomez, 2020. "Glass transition temperature from the chemical structure of conjugated polymers," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Sihong Wang & Jie Xu & Weichen Wang & Ging-Ji Nathan Wang & Reza Rastak & Francisco Molina-Lopez & Jong Won Chung & Simiao Niu & Vivian R. Feig & Jeffery Lopez & Ting Lei & Soon-Ki Kwon & Yeongin Kim , 2018. "Skin electronics from scalable fabrication of an intrinsically stretchable transistor array," Nature, Nature, vol. 555(7694), pages 83-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.
    2. Sung Yun Son & Giwon Lee & Hongyu Wang & Stephanie Samson & Qingshan Wei & Yong Zhu & Wei You, 2022. "Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Himchan Oh & Ji-Young Oh & Chan Woo Park & Jae-Eun Pi & Jong-Heon Yang & Chi-Sun Hwang, 2022. "High density integration of stretchable inorganic thin film transistors with excellent performance and reliability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Chuanqian Shi & Jing Jiang & Chenglong Li & Chenhong Chen & Wei Jian & Jizhou Song, 2024. "Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Taemin Kim & Yejee Shin & Kyowon Kang & Kiho Kim & Gwanho Kim & Yunsu Byeon & Hwayeon Kim & Yuyan Gao & Jeong Ryong Lee & Geonhui Son & Taeseong Kim & Yohan Jun & Jihyun Kim & Jinyoung Lee & Seyun Um , 2022. "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Junhwan Choi & Changhyeon Lee & Chungryeol Lee & Hongkeun Park & Seung Min Lee & Chang-Hyun Kim & Hocheon Yoo & Sung Gap Im, 2022. "Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Chtchelkatchev, N.M. & Ryltsev, R.E. & Mikheyenkov, A.V. & Valiulin, V.E. & Polishchuk, I.Ya., 2023. "Description of a glass transition with immeasurable structural relaxation time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    11. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    12. Mingjian Ni & Zhiqiang Zhuo & Bin Liu & Xu Han & Jing Yang & Lili Sun & Yuekuan Yang & Jiangli Cai & Xiang An & Lubing Bai & Man Xu & Jinyi Lin & Quanyou Feng & Guohua Xie & Yutong Wu & Wei Huang, 2025. "Intrinsically stretchable fully π-conjugated polymers with inter-aggregate capillary interaction for deep-blue flexible inkjet-printed light-emitting diodes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    13. Yao Wang & Chen Huang & Ziwei Cheng & Zhenghao Liu & Yuan Zhang & Yantao Zheng & Shulin Chen & Jie Wang & Peng Gao & Yang Shen & Chungang Duan & Yuan Deng & Ce-Wen Nan & Jiangyu Li, 2024. "Halide Perovskite Inducing Anomalous Nonvolatile Polarization in Poly(vinylidene fluoride)-based Flexible Nanocomposites," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Siwei Xiang & Long Qin & Xiaofei Wei & Xing Fan & Chunmei Li, 2023. "Fabric-Type Flexible Energy-Storage Devices for Wearable Electronics," Energies, MDPI, vol. 16(10), pages 1-26, May.
    16. Yangshuang Bian & Kai Liu & Yang Ran & Yi Li & Yuanhong Gao & Zhiyuan Zhao & Mingchao Shao & Yanwei Liu & Junhua Kuang & Zhiheng Zhu & Mingcong Qin & Zhichao Pan & Mingliang Zhu & Chenyu Wang & Hu Che, 2022. "Spatially nanoconfined N-type polymer semiconductors for stretchable ultrasensitive X-ray detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Yufei Zhang & Qiuchun Lu & Jiang He & Zhihao Huo & Runhui Zhou & Xun Han & Mengmeng Jia & Caofeng Pan & Zhong Lin Wang & Junyi Zhai, 2023. "Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Shi Tang & Youichi Tsuchiya & Jia Wang & Chihaya Adachi & Ludvig Edman, 2025. "White light-emitting electrochemical cells based on metal-free TADF emitters," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Xueguang Lu & Feilong Zhang & Liguo Zhu & Shan Peng & Jiazhen Yan & Qiwu Shi & Kefan Chen & Xue Chang & Hongfu Zhu & Cheng Zhang & Wanxia Huang & Qiang Cheng, 2024. "A terahertz meta-sensor array for 2D strain mapping," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Yang Li & Nan Li & Wei Liu & Aleksander Prominski & Seounghun Kang & Yahao Dai & Youdi Liu & Huawei Hu & Shinya Wai & Shilei Dai & Zhe Cheng & Qi Su & Ping Cheng & Chen Wei & Lihua Jin & Jeffrey A. Hu, 2023. "Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53016-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.