IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2498-d1399964.html
   My bibliography  Save this article

Simulation Analysis of a Methanol Fueled Marine Engine for the Ship Decarbonization Assessment

Author

Listed:
  • Marco Altosole

    (Department of Industrial Engineering (DII), University of Naples “Federico II”, Via Claudio 21, 80125 Napoli, Italy)

  • Flavio Balsamo

    (Department of Industrial Engineering (DII), University of Naples “Federico II”, Via Claudio 21, 80125 Napoli, Italy)

  • Ugo Campora

    (Department of Mechanical, Energy, Management and Transportation Engineering (DIME), University of Genoa, Via Montallegro 1, 16145 Genova, Italy)

  • Ernesto Fasano

    (Department of Industrial Engineering (DII), University of Naples “Federico II”, Via Claudio 21, 80125 Napoli, Italy)

  • Filippo Scamardella

    (Department of Industrial Engineering (DII), University of Naples “Federico II”, Via Claudio 21, 80125 Napoli, Italy)

Abstract

Methanol as marine fuel represents one of the most cost-effective and practical solutions towards low-carbon shipping. Methanol fueled internal combustion engines have a high level of technological readiness and are already available on the market; however, technical data in terms of fuel consumption and emissions are not yet easily accessible. For this reason, the present study deals with the simulation of a virtual spark-ignition methanol engine, carried out in a Matlab-Simulink © R2023a environment to assess the CO 2 emissions in several working conditions of a possible ship power system. The thermodynamic model of the methanol fueled engine is derived from a marine gas engine simulator, already validated by the authors in a previous work. This article presents the relevant modifications necessary to adapt the engine to the methanol fuel mode with regard to the different fuel characteristics. The simulation analysis compares the results of the virtual methanol engine with available data from a similar, existing gas engine, highlighting the differences in efficiency and carbon dioxide emissions.

Suggested Citation

  • Marco Altosole & Flavio Balsamo & Ugo Campora & Ernesto Fasano & Filippo Scamardella, 2024. "Simulation Analysis of a Methanol Fueled Marine Engine for the Ship Decarbonization Assessment," Energies, MDPI, vol. 17(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2498-:d:1399964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vancoillie, J. & Demuynck, J. & Sileghem, L. & Van De Ginste, M. & Verhelst, S. & Brabant, L. & Van Hoorebeke, L., 2013. "The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines," Applied Energy, Elsevier, vol. 102(C), pages 140-149.
    2. Marco Altosole & Giovanni Benvenuto & Raphael Zaccone & Ugo Campora, 2020. "Comparison of Saturated and Superheated Steam Plants for Waste-Heat Recovery of Dual-Fuel Marine Engines," Energies, MDPI, vol. 13(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    2. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    3. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    4. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    5. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    6. Sheng Su & Yunshan Ge & Xin Wang & Mengzhu Zhang & Lijun Hao & Jianwei Tan & Fulu Shi & Dongdong Guo & Zhengjun Yang, 2020. "Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions," Energies, MDPI, vol. 13(11), pages 1-15, May.
    7. Zhu, Zengqiang & Mu, Zhiqiang & Wei, Yanju & Du, Ruiheng & Guan, Wei & Liu, Shenghua, 2022. "Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine," Energy, Elsevier, vol. 254(PA).
    8. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    10. Irimescu, A. & Marchitto, L. & Merola, S.S. & Tornatore, C. & Valentino, G., 2015. "Combustion process investigations in an optically accessible DISI engine fuelled with n-butanol during part load operation," Renewable Energy, Elsevier, vol. 77(C), pages 363-376.
    11. Gong, Changming & Li, Zhaohui & Li, Dong & Liu, Jiajun & Si, Xiankai & Yu, Jiawei & Huang, Wei & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions," Renewable Energy, Elsevier, vol. 127(C), pages 56-63.
    12. Chengjiang Li & Tingwen Jia & Shiyuan Wang & Xiaolin Wang & Michael Negnevitsky & Honglei Wang & Yujie Hu & Weibin Xu & Na Zhou & Gang Zhao, 2023. "Methanol Vehicles in China: A Review from a Policy Perspective," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    13. Sathish Kumar, T. & Ashok, B., 2024. "Development of combustion control map for flex fuel operation in methanol powered direct injection SI engine," Energy, Elsevier, vol. 288(C).
    14. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    15. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "The consumption, production and transportation of methanol in China: A review," Energy Policy, Elsevier, vol. 63(C), pages 130-138.
    16. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
    17. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    18. Demesoukas, Sokratis & Brequigny, Pierre & Caillol, Christian & Halter, Fabien & Mounaïm-Rousselle, Christine, 2016. "0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental results," Applied Energy, Elsevier, vol. 179(C), pages 401-412.
    19. Zhen, Xudong & Wang, Yang, 2015. "Numerical analysis on original emissions for a spark ignition methanol engine based on detailed chemical kinetics," Renewable Energy, Elsevier, vol. 81(C), pages 43-51.
    20. Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2498-:d:1399964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.