IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p209-d1310829.html
   My bibliography  Save this article

Emissions from Light-Duty Vehicles—From Statistics to Emission Regulations and Vehicle Testing in the European Union

Author

Listed:
  • Wiktor Pacura

    (Faculty of Energy and Fuels, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Katarzyna Szramowiat-Sala

    (Faculty of Energy and Fuels, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Janusz Gołaś

    (Faculty of Energy and Fuels, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

The article offers a comprehensive examination of vehicle emissions, with a specific focus on the European Union’s automotive industry. Its main goal is to provide an in-depth analysis of the factors influencing the emission of microcontaminants from light-duty vehicles and the challenges associated with their removal via exhaust aftertreatment systems. It presents statistical insights into the automotive sector and explores the relationships between vehicle categories, fuel types, and the emission of regulated and nonregulated pollutants, as well as relevant legal regulations such as the European Emission Standard. The article delves into the characteristics of vehicle exhaust, compares exhaust-gas aftertreatment systems, and introduces factors affecting emissions from gasoline engines, including downsizing, fuel composition, and engine operating parameters. It also considers the impact of driving style, start–stop systems, and related factors. Concluding, the article offers an overview of vehicle-testing procedures, including emission tests on dynamometer chassis and real driving emissions. With the growing global vehicle population and international environmental regulations, a focus on solid particles containing microcontaminants is paramount, as they pose significant risks to health and the environment. In summary, this article provides valuable insights into vehicle emissions, significantly contributing to our understanding of this crucial environmental issue.

Suggested Citation

  • Wiktor Pacura & Katarzyna Szramowiat-Sala & Janusz Gołaś, 2023. "Emissions from Light-Duty Vehicles—From Statistics to Emission Regulations and Vehicle Testing in the European Union," Energies, MDPI, vol. 17(1), pages 1-42, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:209-:d:1310829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    2. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    3. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    4. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    5. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Karavalakis, Georgios & Short, Daniel & Vu, Diep & Russell, Robert L. & Asa-Awuku, Akua & Jung, Heejung & Johnson, Kent C. & Durbin, Thomas D., 2015. "The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines," Energy, Elsevier, vol. 82(C), pages 168-179.
    7. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    8. Zhang, Mengzhu & Ge, Yunshan & Wang, Xin & Xu, Hongming & Tan, Jianwei & Hao, Lijun, 2021. "Effects of ethanol and aromatic compositions on regulated and unregulated emissions of E10-fuelled China-6 compliant gasoline direct injection vehicles," Renewable Energy, Elsevier, vol. 176(C), pages 322-333.
    9. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    10. Cho, Jaeho & Si, Woosung & Jang, Wonwook & Jin, Dongyoung & Myung, Cha-Lee & Park, Simsoo, 2015. "Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine," Applied Energy, Elsevier, vol. 160(C), pages 592-602.
    11. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    12. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    13. Morganti, Kai & Al-Abdullah, Marwan & Alzubail, Abdullah & Kalghatgi, Gautam & Viollet, Yoann & Head, Robert & Khan, Ahmad & Abdul-Manan, Amir, 2017. "Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenhouse Gas Emissions," Applied Energy, Elsevier, vol. 208(C), pages 1538-1561.
    14. Vancoillie, J. & Sileghem, L. & Verhelst, S., 2014. "Development and validation of a quasi-dimensional model for methanol and ethanol fueled SI engines," Applied Energy, Elsevier, vol. 132(C), pages 412-425.
    15. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
    16. Qian, Yong & Chen, Feier & Zhang, Yahui & Tao, Wencao & Han, Dong & Lu, Xingcai, 2019. "Combustion and regulated/unregulated emissions of a direct injection spark ignition engine fueled with C3-C5 alcohol/gasoline surrogate blends," Energy, Elsevier, vol. 174(C), pages 779-791.
    17. Gong, Changming & Peng, Legao & Liu, Fenghua, 2017. "Modeling of the overall equivalence ratio effects on combustion process and unregulated emissions of an SIDI methanol engine," Energy, Elsevier, vol. 125(C), pages 118-126.
    18. Agarwal, Avinash Kumar & Mustafi, Nirendra Nath, 2021. "Real-world automotive emissions: Monitoring methodologies, and control measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    20. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:209-:d:1310829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.