IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5771-d634619.html
   My bibliography  Save this article

CFD Simulation of a 3D Solar Chimney Integrated with an Axial Turbine for Power Generation

Author

Listed:
  • Suad Hassan Danook

    (Kirkuk Technical College, Northen Technical University, Kirkuk 36001, Iraq)

  • Hussein A. Z. AL-bonsrulah

    (Department of Mechanical Engineering, Faculty of Engineering, Kufa University, Najaf 54002, Iraq)

  • Ishak Hashim

    (Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Dhinakaran Veeman

    (Centre for Computational Mechanics, Chennai Institute of Technology, Chennai 600069, India)

Abstract

The solar chimney is one of the uninvestigated areas in the possible selection in the field of renewable solar energy utilization. CFD can be demonstrated as a useful tool of figure confidence in the design and employment of a solar chimney. A realistic numerical model for a solar-based updraft power plant for power generation was established through this research work. Iraqi weather in Kirkuk, northern Iraq was considered for this case study. A three-dimensional (3D) simulation of the main geometric dimensions of the Spanish, Manzanares model integrated with a real turbine was performed using computational fluid dynamics (CFD). The turbulent model of RNG k-e, the nongrey discrete coordinate (DO) radiation model, and the solar raytracing algorithm were used. It was observed that the air velocity below the turbine was graded according to the seasons of the year and was at its maximum in July with 18.28 m/s due to the high ambient temperature, and the lowest value was recorded in January with 8.64 m/s. The overall average daily and monthly energy production values for the Kirkuk system were higher than those of the Kubang system, with values of 310 kWh/day and 9314 kWh/month, respectively, for the Kirkuk system, and 246 kWh/day and 7398 kWh/month, respectively, for the Kubang system. The simulation results showed that the electricity generation from the Kirkuk city power plant varied seasonally to be at its maximum value of 14,424 kWh/month in July. This research work will help to determine the possibility of producing electricity in this Kirkuk city, which would then contribute in a great way to reduce the cash spent on electricity.

Suggested Citation

  • Suad Hassan Danook & Hussein A. Z. AL-bonsrulah & Ishak Hashim & Dhinakaran Veeman, 2021. "CFD Simulation of a 3D Solar Chimney Integrated with an Axial Turbine for Power Generation," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5771-:d:634619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdem Cuce & Abhishek Saxena & Pinar Mert Cuce & Harun Sen & Shaopeng Guo & K Sudhakar, 2021. "Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 704-714.
    2. Kazem, Hussein A. & Chaichan, Miqdam T., 2012. "Status and future prospects of renewable energy in Iraq," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6007-6012.
    3. Hassan, Aakash & Ali, Majid & Waqas, Adeel, 2018. "Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle," Energy, Elsevier, vol. 142(C), pages 411-425.
    4. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    5. Zuo, Lu & Dai, Pengzhan & Yan, Ziyang & Li, Chuang & Zheng, Yuan & Ge, Yunting, 2021. "Design and optimization of turbine for solar chimney power plant based on lifting design method of axial-flow hydraulic turbine impeller," Renewable Energy, Elsevier, vol. 171(C), pages 799-811.
    6. Zuo, Lu & Liu, Zihan & Dai, Pengzhan & Qu, Ning & Ding, Ling & Zheng, Yuan & Ge, Yunting, 2021. "Economic performance evaluation of the wind supercharging solar chimney power plant combining desalination and waste heat after parameter optimization," Energy, Elsevier, vol. 227(C).
    7. Guo, Peng-hua & Li, Jing-yin & Wang, Yuan, 2014. "Numerical simulations of solar chimney power plant with radiation model," Renewable Energy, Elsevier, vol. 62(C), pages 24-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Zohair Hassan, 2023. "Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser," Energies, MDPI, vol. 17(1), pages 1-35, December.
    2. Hassan Zohair Hassan, 2022. "Transient Analysis of a Solar Chimney Power Plant Integrated with a Solid-Sorption Cooling System for Combined Power and Chilled Water Production," Energies, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinar Mert Cuce & Erdem Cuce & Saad Alshahrani & Shaik Saboor & Harun Sen & Ibham Veza & C. Ahamed Saleel, 2022. "Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
    2. Praveen, Vivek & Das, Pritam & Chandramohan, V.P., 2021. "A novel concept of introducing a fillet at the chimney base of solar updraft tower plant and thereby improving the performance: A numerical study," Renewable Energy, Elsevier, vol. 179(C), pages 37-46.
    3. Tawalbeh, Muhammad & Mohammed, Shima & Alnaqbi, Aaesha & Alshehhi, Shouq & Al-Othman, Amani, 2023. "Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 202(C), pages 667-685.
    4. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    5. Xiong, Hanbing & Ming, Tingzhen & Shi, Tianhao & Wu, Yongjia & Li, Wei & de Richter, Renaud & Zhou, Nan, 2024. "Numerical investigation on performance of solar chimney power plant with three wind resistant structures," Energy, Elsevier, vol. 297(C).
    6. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    7. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    8. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    9. Nematollahi, Omid & Hoghooghi, Hadi & Rasti, Mehdi & Sedaghat, Ahmad, 2016. "Energy demands and renewable energy resources in the Middle East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1172-1181.
    10. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    11. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    12. Miqdam T. Chaichan & Hussien A. Kazem & Talib A. Abed, 2018. "Traffic and outdoor air pollution levels near highways in Baghdad, Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 589-603, April.
    13. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    14. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    15. Al-Dousari, Ali & Al-Nassar, Waleed & Al-Hemoud, Ali & Alsaleh, Abeer & Ramadan, Ashraf & Al-Dousari, Noor & Ahmed, Modi, 2019. "Solar and wind energy: Challenges and solutions in desert regions," Energy, Elsevier, vol. 176(C), pages 184-194.
    16. Erdem Cuce & Abhishek Saxena & Pinar Mert Cuce & Harun Sen & Hasan Eroglu & Shanmuga Priya Selvanathan & Kumarasamy Sudhakar & Md Hasanuzzaman, 2022. "Performance assessment of solar chimney power plants with natural thermal energy storage materials on ground: CFD analysis with experimental validation [Optimised performance of a thermally resisti," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 752-759.
    17. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    18. Erdem Cuce, 2022. "Dependence of electrical power output on collector size in Manzanares solar chimney power plant: an investigation for thermodynamic limits [Solar chimney power plants: a review of the concepts, des," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1223-1231.
    19. Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
    20. Chen, Longxiang & Liu, Xi & Ye, Kai & Xie, Meina & Lan, Wenchao, 2023. "Thermodynamic and economic analysis of an integration system of multi-effect desalination (MED) with ice storage based on a heat pump," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5771-:d:634619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.